Synlett 2017; 28(10): 1227-1231
DOI: 10.1055/s-0036-1588152
letter
© Georg Thieme Verlag Stuttgart · New York

Potassium Hydroxide Catalysed Intermolecular Aza-Michael Addition of 3-Cyanoindole to Aromatic Enones

Jingya Yang*
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Tianyuan Li
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Hongyan Zhou
b   College of Science, Gansu Agricultural University, Lanzhou 730070, P. R. of China
,
Nana Li
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Dongtai Xie
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
,
Zheng Li
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China   Email: yangjy@nwnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 04 January 2017

Accepted after revision: 12 February 2017

Publication Date:
28 February 2017 (online)


Abstract

Indole is one of the utmost important heterocycles as it is an essential nucleus of many pharmaceutical compounds. Its aza-Michael reaction, however, is underdeveloped because of the moiety’s inherent characteristics. Here, a potassium hydroxide catalysed intermolecular aza-Michael reaction of 3-cyanoindole with aromatic enones is described. A variety of chalcone derivatives are well tolerated and afford the corresponding N-adducts in moderate to high yields. The use of a cheap catalyst, low catalyst loading, mild reaction temperature, and good substrate tolerance make this procedure a direct and facile method for the preparation of N1-functionalized indoles.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Sherer C, Snape T. J. Eur. J. Med. Chem. 2015; 97: 552-552
    • 1b Shafakat Ali NA, Ahmad Dar B, Pradhan V, Farooqui M. Mini-Rev. Med. Chem. 2013; 13: 1792-1792
    • 1c Kaushik NK, Kaushik N, Attri P, Kumar N, Kim HC, Verma AK, Choi EH. Molecules 2013; 18: 6620-6620
    • 1d Biersack B, Schobert R. Curr. Drug Targets 2012; 13: 1705-1705
    • 1e Sharma V, Kumar P, Pathak D. J. Heterocycl. Chem. 2010; 47: 491-491
    • 1f de Sa Alves FR, Barreiro EJ, Manssour Fraga CA. Mini-Rev. Med. Chem. 2009; 9: 782-782
    • 1g Van Order RB, Lindwall HG. Chem. Rev. 1942; 30: 69-69

      For selected reviews, see:
    • 2a Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195-7195
    • 2b Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215-PR215
    • 2c Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875-2875
    • 2d Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045-1045

      For selected reviews, see:
    • 3a Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403-2403
    • 3b Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742-742
    • 3c Beck EM, Gaunt MJ. In C–H Activation . Vol. 292. Yu JQ, Shi Z. Springer; Berlin: 2010: 85
    • 3d Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449-4449
    • 3e Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673-673
    • 3f Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608-9608
  • 4 Karchava AV, Melkonyan FS, Yurovskaya MA. Chem. Heterocycl. Compd. 2012; 48: 391-391

    • For selected reviews, see:
    • 5a Gmach J, Joachimiak Ł, Błażewska KM. Synthesis 2016; 48: 2681-2681
    • 5b Sánchez-Roselló M, Aceña JL, Simón-Fuentes A, del Pozo C. Chem. Soc. Rev. 2014; 43: 7430-7430
    • 5c Amara Z, Caron J, Joseph D. Nat. Prod. Rep. 2013; 30: 1211-1211
    • 5d Wang J, Li P, Choy PY, Chan AS. C, Kwong FY. ChemCatChem 2012; 4: 917-917
    • 5e Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058-11058
    • 5f Xu L.-W, Xia C.-G. Eur. J. Org. Chem. 2005; 633-633
    • 6a Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666-8666
    • 6b Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238-3238
    • 7a Sunaba H, Kamata K, Mizuno N. ChemCatChem 2014; 6: 2333-2333
    • 7b Moghaddam FM, Bardajee GR, Taimoory SM. D. Lett. Org. Chem. 2006; 3: 157-157
    • 8a Dubois L, Acher FC, McCort-Tranchepain I. Synlett 2012; 23: 791-791
    • 8b Ying A, Zheng M, Xu H, Qiu F, Ge C. Res. Chem. Intermed. 2011; 37: 883-883
    • 8c Hou X, Hemit H, Yong J, Nie L, Aisa HA. Synth. Commun. 2010; 40: 973-973
    • 8d Yeom C.-E, Kim MJ, Kim BM. Tetrahedron 2007; 63: 904-904
  • 9 Kim S, Kang S, Kim G, Lee Y. J. Org. Chem. 2016; 81: 4048-4048
  • 10 Saikia M, Deka DC, Karmakar S. Curr. Microwave Chem. 2016; 3: 47-47
    • 11a Kilic H, Bayindir S, Erdogan E, Saracoglu N. Tetrahedron 2012; 68: 5619-5619
    • 11b Bayindir S, Erdogan E, Kilic H, Saracoglu N. Synlett 2010; 1455-1455
    • 12a Han X. Tetrahedron Lett. 2007; 48: 2845-2845
    • 12b Bhanuchandra M, Kuram MR, Sahoo AK. Org. Biomol. Chem. 2012; 10: 3538-3538
  • 13 Yang J, Ma B, Zhou H, Zhan B, Li Z. Chin. J. Org. Chem. 2015; 35: 121-121
  • 14 Yang J, Bao Y, Zhou H, Li T, Li N, Li Z. Synthesis 2016; 48: 1139-1139
  • 15 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Application. 3rd ed. Wiley-VCH; Weinheim: 2012
    • 16a Sadler SA, Hones AC, Roberts B, Blakemore D, Marder TB, Steel PG. J. Org. Chem. 2015; 80: 5308-5308
    • 16b Hong L, Sun W, Liu C, Wang L, Wang R. Chem. Eur. J. 2010; 16: 440-440
  • 17 Beevers RE, Buckley GM, Davies N, Fraser JL, Galvin FC, Hannah DR, Haughan AF, Jenkins K, Mack SR, Pitt WR, Ratcliffe AJ, Richard MD, Sabin V, Sharpe A, Williams SC. Bioorg. Med. Chem. Lett. 2006; 16: 2535-2535
  • 18 Ge Y, Li T, Ren K. CN 104311376, 2015 ; Chem. Abstr. 2015, 162, 286922
  • 19 Luo Y.-H, Sun B.-W. Cryst. Eng. Commun. 2013; 15: 7490-7490
  • 20 Islam SM, Ghosh K, Roy AS, Molla RA. Appl. Organometal. Chem. 2014; 28: 900-900
  • 21 Das T, Chakraborty A, Sarkar A. Tetrahedron Lett. 2014; 55: 7198-7198
    • 22a Meshram GA, Deshpande SS, Wagh PA, Vala VA. Tetrahedron Lett. 2014; 55: 3557-3557
    • 22b Rao HS. P, Desai A. Synlett 2014; 26: 1059-1059
    • 22c Pakhare DS, Kusurkar RS. Tetrahedron Lett. 2015; 56: 6012-6012
  • 23 Miyake FY, Yakushijin K, Horne DA. Org. Lett. 2000; 2: 2121-2121
  • 24 Lynch K, Santos W. WO 2016054261, 2016 ; Chem. Abstr. 2016, 164, 472549
    • 25a Kumar D, Narayanam MK, Chang K.-H, Shah K. Chem. Biol. Drug Des. 2011; 77: 182-182
    • 25b Kumar D, Kumar NM, Chang K.-H, Gupta R, Shah K. Bioorg. Med. Chem. Lett. 2011; 21: 5897-5897
    • 25c Dolušić E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, Pochet L, Van den Eynde B, Masereel B, Wouters J, Frédérick R. J. Med. Chem. 2011; 54: 5320-5320
  • 26 Ryzhova EA, Koryakova AG, Bulanova EA, Mikitas’ OV, Karapetyan RN, Lavrovskii YV, Ivashchenko AV. Pharm. Chem. J. 2009; 43: 148-148
  • 27 Swain CJ, Baker R, Kneen C, Moseley J, Saunders J, Seward EM, Stevenson G, Beer M, Stanton J, Watling K. J .Med. Chem. 1991; 34: 140-140
    • 28a Yuen OY, Choy PY, Chow WK, Wong WT, Kwong FY. J. Org. Chem. 2013; 78: 3374-3374
    • 28b Qiu G, Qiu X, Liu J, Wu J. Adv. Synth. Catal. 2013; 355: 2441-2441
    • 28c Banini SR, Turner MR, Cummings MM, Söderberg BC. G. Tetrahedron 2011; 67: 3603-3603
    • 28d Subba Reddy BV, Begum Z, Jayasudhan Reddy Y, Yadav JS. Tetrahedron Lett. 2010; 51: 3334-3334
    • 28e Murali Dhar TG, Shen Z, Gu HH, Chen P, Norris D, Watterson SH, Ballentine SK, Fleener CA, Rouleau KA, Barrish JC, Townsend R, Hollenbaugh DL, Iwanowicz EJ. Bioorg. Med. Chem. Lett. 2003; 13: 3557-3557
  • 29 Antilla JC, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 11684-11684
  • 30 Stanley LM, Hartwig JF. Angew. Chem. Int. Ed. 2009; 48: 7841-7841
  • 31 Wu G, Su W. Org. Lett. 2013; 15: 5278-5278
  • 32 Chakrabarty M, Sarkar S, Khasnobis S, Harigaya Y, Sato N, Arima S. Synth. Commun. 2002; 32: 2295-2295
  • 33 1-(3-Oxo-1,3-diphenylpropyl)-1H-indole-3-carbonitrile (2a) – Typical Procedure Enone 1a (62.5 mg, 0.3 mmol), 3-cyanoindole (51.2 mg, 0.36 mmol, 1.2 equiv), KOH (0.8 mg, 0.015 mmol, 5.0 mol%), and CH2Cl2 (3.0 mL) were sequentially charged into a dry round-bottomed flask (25 mL). The reaction mixture was stirred at 25 °C until the reaction complete (monitored by TLC). The reaction mixture was diluted with CH2Cl2 (3.0 mL), and washed with brine (3 × 4.0 mL). The aqueous phase was extracted with CH2Cl2 (4.0 mL). The organic phase was combined, dried with anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE–EtOAc, 6:1) to afford the pure product 2a. White solid; yield 71.4 mg (68%); mp 123–125 °C. 1H NMR (600 MHz, CDCl3): δ = 7.93 (d, J = 7.8 Hz, 2 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.71 (s, 1 H), 7.62–7.59 (m, 1 H), 7.49–7.47 (m, 3 H), 7.36–7.27 (m, 5 H), 7.24 (d, J = 7.2 Hz, 2 H), 6.42 (t, J = 6.6 Hz, 1 H), 3.99 (d, J = 6.6 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 195.2, 138.4, 136.0, 135.3, 134.0, 132.6, 129.2, 128.9, 128.6, 128.1, 128.0, 126.4, 124.1, 122.4, 120.0, 115.7, 111.3, 86.8, 56.1, 43.3. ESI-HRMS: m/z [M + H]+ calcd for C24H19N2O: 351.1492; found: 351.1494.
  • 34 CCDC 1510327 contains the supplementary crystallographic data for compound 2m. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.