Synlett 2016; 27(20): 2807-2810
DOI: 10.1055/s-0036-1588074
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Isoindolo[2,1-a]quinazoline, Isoindolo[2,1-a]pyrrolo [2,1-c]quinoxalinone, and Indolo[1,2-a]isoindolo[1,2-c]quinoxalinone Derivatives in a Deep Eutectic Solvent

Rajkumari Vijilata Devi
Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India   Email: pm.bhate@ictmumbai.edu.in
,
Ashok M. Garande
Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India   Email: pm.bhate@ictmumbai.edu.in
,
Prakash M. Bhate*
Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India   Email: pm.bhate@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 14 July 2016

Accepted after revision: 31 August 2016

Publication Date:
19 September 2016 (online)


These authors contributed equally.

Abstract

2-Formylbenzoic acid reacts with various derivatives of 2-aminobenzamide, 2-(1H-pyrrol-1-yl)aniline or 2-(1H-indol-1-yl)aniline in a deep eutectic solvent to give the corresponding derivatives of 6,6a-dihydroisoindolo[2,1-a]quinazoline-5,11-dione, isoindolo[2,1-a]pyrrolo[2,1-c]quinoxalin-10(14bH)-one, and indolo[1,2-a]isoindolo[1,2-c]quinoxalin-11(15bH)-one, respectively . This protocol is operationally simple, mild, and efficient.

 
  • References and Notes

  • 1 Hamprecht D, Micheli F, Tedesco G, Checchia A, Donati D, Petrone M, Terreni S, Wood M. Bioorg. Med. Chem. Lett. 2007; 17: 428
  • 2 Li Y, Wu C, Liu D, Proksch P, Guo P, Lin W. J. Nat. Prod. 2014; 77: 138
  • 3 Lu W.-W, Gao Y.-J, Su M.-Z, Luo Z, Zhang W, Shi G.-B, Zhao Q.-C. Helv. Chim. Acta 2013; 96: 109
  • 4 Oukoloff K, Buron F, Routier S, Jean L, Renard P.-Y. Eur. J. Org. Chem. 2015; 2450
  • 5 Speck K, Magauer T. Beilstein J. Org. Chem. 2013; 9: 2048
  • 6 Wang G, Wu W, Zhu Q, Fu S, Wang X, Hong S, Guo R, Bao B. Chin. J. Chem. 2015; 33: 1089
  • 7 Wrobel J, Dietrich A, Woolson SA, Millen J, McCaleb M, Harrison MC, Hohman TC, Sredy J, Sullivan D. J. Med. Chem. 1992; 35: 4613
  • 8 Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q. Phytochemistry 2011; 72: 1436
  • 9 Kumar KS, Kumar PM, Kumar KA, Sreenivasulu M, Jafar AA, Rambabu D, Krishna GR, Reddy CM, Kapavarapu R, Shivakumar K, Priya KK, Parsa KV. L, Pal M. Chem. Commun. 2011; 47: 5010
  • 10 Sashidhara KV, Palnati GR, Dodda RP, Avula SR, Swami P. Synlett 2013; 24: 105
  • 11 Gromachevskaya EV, Fin’ko AV, Butin AV, Pushkareva KS, Strelkov VD, Isakova LI, Krapivin GD. Chem. Heterocycl. Compd. (Engl. Transl.) 2013; 49: 1331
  • 12 Reddy GR, Reddy TR, Chary RG, Joseph SC, Mukherjee S, Pal M. Tetrahedron Lett. 2013; 54: 6744
  • 13 Avalani JR, Patel DS, Raval DK. J. Mol. Catal. B: Enzym. 2013; 90: 70
  • 14 Santra S, Bagdi AK, Majee A, Hajra A. RSC Adv. 2013; 3: 24931
  • 15 Lu L, Yang K, Zhang M.-M, Wang X.-S. J. Heterocycl. Chem. 2014; 51: 630
  • 16 Jin R.-Z, Zhang W.-T, Zhou Y.-J, Wang X.-S. Tetrahedron Lett. 2016; 57: 2515
  • 17 Mahdavi M, Najafi R, Saeedi M, Alipour E, Shafiee A, Foroumadi A. Helv. Chim. Acta 2013; 96: 419
  • 18 Bunce RA, Nammalwar B. J. Heterocycl. Chem. 2011; 48: 991
  • 19 Cheeseman GW. H, Rafiq M. J. Chem. Soc. C 1971; 2732
  • 20 Raines S, Chai SY, Palopoli FP. J. Heterocycl. Chem. 1976; 13: 711
  • 21 Kim HS, Kurasawa Y, Yoshii C, Masuyama M, Takada A, Okamoto Y. J. Heterocycl. Chem. 1990; 27: 1115
  • 22 Zhang X.-c, Huang W.-y. Tetrahedron Lett. 1997; 38: 4827
  • 23 He Z, Bae M, Wu J, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 14451
  • 24 Verma AK, Jha RR, Sankar VK, Aggarwal T, Singh RP, Chandra R. Eur. J. Org. Chem. 2011; 6998
  • 25 Othman M, Pigeon P, Netchitailo P, Daich A, Decroix B. Heterocycles 2000; 52: 273
  • 26 Veeraraghavan S, Popp FD. J. Heterocycl. Chem. 1981; 18: 775
  • 27 Atfah A, Abu-Shuheil MY, Hill J. Tetrahedron 1990; 46: 6483
  • 28 Yi CS, Yun SY. J. Am. Chem. Soc. 2005; 127: 17000
  • 29 Kundu B, Sawant D, Chhabra R. J. Comb. Chem. 2005; 7: 317
  • 30 Rokade SM, Bhate PM. Carbohydr. Res. 2015; 416: 21
  • 31 Rokade SM, Bhate PM. Carbohydr. Res. 2015; 415: 28
  • 32 Singh BS, Lobo HR, Pinjari DV, Jarag KJ, Pandit AB, Shankarling GS. Ultrason. Sonochem. 2013; 20: 287
  • 33 Smith EL, Abbott AP, Ryder KS. Chem. Rev. 2014; 114: 11060
  • 34 Tang B, Row KH. Monatsh. Chem. 2013; 144: 1427
  • 35 Vidal C, García-Álvarez J, Hernán-Gómez A, Kennedy AR, Hevia E. Angew. Chem. Int. Ed. 2014; 53: 5969
  • 36 Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Chem. Soc. Rev. 2012; 41: 7108
  • 37 6,6a-Dihydroisoindolo[2,1-a]quinazoline-5,11-diones 3ag, Isoindolo[2,1-a]pyrrolo[2,1-c]quinoxalin-10(14bH)-ones 5af, and Indolo[1,2-a]isoindolo[1,2-c]quinoxalin-11(15bH)-ones 7a,b; General Procedure To a mixture of 2-formylbenzoic acid (1; 1 mmol) and the appropriate amine 2, 4, or 6 (1 mmol) was added the DES (1.5 g), prepared from ChCl and TsOH.31 The resulting mixture was stirred at r.t. until the starting materials were completely consumed (TLC). The reaction mass was then diluted with H2O (5 mL), and the desired product, obtained as a precipitate, was isolated by filtration and crystallized from the appropriate solvent. The filtrate was evaporated under vacuum at 70 °C for 2 h, and the residual DES was reused in further reaction cycles. 6,6a-Dihydroisoindolo[2,1-a]quinazoline-5,11-dione (3a) White solid; yield: 237 mg (95%); 1H NMR (500 MHz, DMSO-d 6): δ = 9.406 (s, 1 H), 8.089 (d, J = 7.5 Hz, 1 H), 7.983 (d, J = 7 Hz, 1 H), 7.898 (d, J = 7 Hz, 2 H), 7.801 (t, J = 7 Hz, 1 H), 7.724–7.688 (m, 2 H), 7.361 (t, J = 7 Hz, 1 H), 6.526 (s, 1 H)