J Pediatr Genet 2017; 06(02): 084-091
DOI: 10.1055/s-0036-1588027
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Genomic Microarray in Intellectual Disability: The Usefulness of Existing Systems in the Interpretation of Copy Number Variation

Hela Ben Khelifa
1   Department of Cytogenetic and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Najla Soyah
2   Department of Pediatric, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Audrey Labalme
3   Hospices Civils de Lyon, Service de Cytogénétique Constitutionnelle, Lyon, France
,
Helene Guilbert
3   Hospices Civils de Lyon, Service de Cytogénétique Constitutionnelle, Lyon, France
,
Damien Sanlaville
3   Hospices Civils de Lyon, Service de Cytogénétique Constitutionnelle, Lyon, France
,
Ali Saad
1   Department of Cytogenetic and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Soumaya Mougou-Zerelli
1   Department of Cytogenetic and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
› Author Affiliations
Further Information

Publication History

22 March 2016

19 July 2016

Publication Date:
08 September 2016 (online)

Abstract

Whole genome array technology is an essential tool for the detection of a large number of copy number variants (CNVs) in patients with ID and/or multiple congenital anomalies. However, the clinical significance of some microimbalances is not known. In this article, we succeeded to detect seven new variations of unknown significance (dup12p13.33, dup2p16.3, dupXq13.2, del12q24.33, dup16p13.11, trip4q22.1, and dup9p21.3), one CNV classified as known pathogenic syndrome (del22q13.31-q33), and one CNV classified as potentially pathogenic (del11q24.3). We emphasize the role of comparative genomic hybridization arrays in the investigation of intellectual disability and evaluate the usefulness of existing systems in the interpretation of CNVs.

 
  • References

  • 1 Vissers LE, de Vries BB, Veltman JA. Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 2010; 47 (5) 289-297
  • 2 van Karnebeek CD, Scheper FY, Abeling NG , et al. Etiology of mental retardation in children referred to a tertiary care center: a prospective study. Am J Ment Retard 2005; 110 (4) 253-267
  • 3 Gijsbers AC, Lew JY, Bosch CA , et al. A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first. Eur J Hum Genet 2009; 17 (11) 1394-1402
  • 4 Redon R, Ishikawa S, Fitch KR , et al. Global variation in copy number in the human genome. Nature 2006; 444 (7118): 444-454
  • 5 Pfundt R, Veltman JA. Structural genomic variation in intellectual disability. Methods Mol Biol 2012; 838: 77-95
  • 6 De Vries BB, Winter R, Schinzel A, van Ravenswaaij-Arts C. Telomeres: a diagnosis at the end of the chromosomes. J Med Genet 2003; 40 (6) 385-398
  • 7 Lee C, Iafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet 2007; 39 (7, Suppl): S48-S54
  • 8 Palmer E, Speirs H, Taylor PJ , et al. Changing interpretation of chromosomal microarray over time in a community cohort with intellectual disability. Am J Med Genet A 2014; 164A (2) 377-385
  • 9 Dhar SU, del Gaudio D, German JR , et al. 22q13.3 deletion syndrome: clinical and molecular analysis using array CGH. Am J Med Genet A 2010; 152A (3) 573-581
  • 10 Boccone L, Mariotti S, Dessì V, Pruna D, Meloni A, Loudianos G. Allan-Herndon-Dudley syndrome (AHDS) caused by a novel SLC16A2 gene mutation showing severe neurologic features and unexpectedly low TRH-stimulated serum TSH. Eur J Med Genet 2010; 53 (6) 392-395
  • 11 Akshoomoff N, Mattson SN, Grossfeld PD. Evidence for autism spectrum disorder in Jacobsen syndrome: identification of a candidate gene in distal 11q. Genet Med 2015; 17 (2) 143-148
  • 12 Gijsbers AC, Bosch CA, Dauwerse JG , et al. Additional cryptic CNVs in mentally retarded patients with apparently balanced karyotypes. Eur J Med Genet 2010; 53 (5) 227-233
  • 13 Buysse K, Delle Chiaie B, Van Coster R , et al. Challenges for CNV interpretation in clinical molecular karyotyping: lessons learned from a 1001 sample experience. Eur J Med Genet 2009; 52 (6) 398-403
  • 14 Bickhart DM, Xu L, Hutchison JL , et al. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 2016; 23 (3) 253-262