Am J Perinatol 2017; 34(4): 349-358
DOI: 10.1055/s-0036-1588026
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Ischemia-Modified Albumin May Be a Novel Marker for Predicting Neonatal Neurologic Injury in Small-For-Gestational-Age Infants in Addition to Neuron-Specific Enolase

Cuneyt Tayman
1   Department of Neonatology, Denizli T. C. Public Health Hospital, Denizli, Turkey
,
Osman Öztekin
1   Department of Neonatology, Denizli T. C. Public Health Hospital, Denizli, Turkey
,
Utku Serkant
2   Department of Biochemistry, Golbasi Public Health Hospital, Ankara, Turkey
,
Ibrahim Yakut
3   Department of Pediatrics, Zekai Tahir Burak Maternity and Teaching Hospital, Ankara, Turkey
,
Salih Aydemir
4   Department of Pediatrics, Dr. Sami Ulus Children Research and Training Hospital, Ankara, Turkey
,
Aydın Kosus
5   Department of Obstetric and Gynecology, Jinomed Woman Health Center, Ankara, Turkey
› Author Affiliations
Further Information

Publication History

18 June 2016

21 July 2016

Publication Date:
29 August 2016 (online)

Abstract

Aim This study aims to evaluate hypoxia/ischemia and oxidant stress, and negative neurodevelopmental outcomes in small-for-gestational-age (SGA) infants.

Material and Methods Two study groups were established as SGA and appropriate-for-gestational-age (AGA) infants. SGA infants were allocated asymmetric and symmetric SGA infants. Serum levels of neuron-specific enolase (NSE), ischemia-modified albumin (IMA), malondialdehyde (MDA), total antioxidant capacity (TAC), and total oxidant status (TOS) were determined and oxidative stress indexes (OSI) were calculated in all groups.

Results Overall, 83 infants were diagnosed SGA, and 85 infants were determined AGA. TOS and OSI levels were significantly higher and TAC levels were significantly lower in SGA group (p < 0.05). MDA and IMA levels were significantly higher in SGA group (p < 0.05). NSE levels in SGA infants were significantly higher (p < 0.05). NSE and IMA were significantly higher in symmetric SGA infants (p < 0.05). TOS, OSI, MDA, TAC levels were not significantly different in SGA infants with abnormal neurological findings (p > 0.05); NSE and IMA levels were significantly higher in SGA group with abnormal neurological findings (p < 0.05).

Conclusion SGA infants expose to hypoxia and oxidative stress led to neuronal damage. We suggest that in addition to NSE, IMA blood levels might be a sensitive novel marker for predicting the severity of neuronal damage.

 
  • References

  • 1 Gardosi J. New definition of small for gestational age based on fetal growth potential. Horm Res 2006; 65 (Suppl. 03) 15-18
  • 2 Figueras F, Gardosi J. Intrauterine growth restriction: new concepts in antenatal surveillance, diagnosis, and management. Am J Obstet Gynecol 2011; 204 (4) 288-300
  • 3 Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet 2012; 379 (9814): 445-452
  • 4 McCormick MC, Workman-Daniels K, Brooks-Gunn J. The behavioral and emotional well-being of school-age children with different birth weights. Pediatrics 1996; 97 (1) 18-25
  • 5 Pryor J, Silva PA, Brooke M. Growth, development and behaviour in adolescents born small-for-gestational-age. J Paediatr Child Health 1995; 31 (5) 403-407
  • 6 Leitner Y, Fattal-Valevski A, Geva R , et al. Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study. J Child Neurol 2007; 22 (5) 580-587
  • 7 Geva R, Eshel R, Leitner Y, Fattal-Valevski A, Harel S. Memory functions of children born with asymmetric intrauterine growth restriction. Brain Res 2006; 1117 (1) 186-194
  • 8 Geva R, Eshel R, Leitner Y, Valevski AF, Harel S. Neuropsychological outcome of children with intrauterine growth restriction: a 9-year prospective study. Pediatrics 2006; 118 (1) 91-100
  • 9 O'Keeffe MJ, O'Callaghan M, Williams GM, Najman JM, Bor W. Learning, cognitive, and attentional problems in adolescents born small for gestational age. Pediatrics 2003; 112 (2) 301-307
  • 10 Frisk V, Amsel R, Whyte HE. The importance of head growth patterns in predicting the cognitive abilities and literacy skills of small-for-gestational-age children. Dev Neuropsychol 2002; 22 (3) 565-593
  • 11 Streimish IG, Ehrenkranz RA, Allred EN , et al; ELGAN Study Investigators. Birth weight- and fetal weight-growth restriction: impact on neurodevelopment. Early Hum Dev 2012; 88 (9) 765-771
  • 12 Balcazar H, Haas J. Classification schemes of small-for-gestational age and type of intrauterine growth retardation and its implications to early neonatal mortality. Early Hum Dev 1990; 24: 219-230
  • 13 Harkness UF, Mari G. Diagnosis and management of intrauterine growth restriction. Clin Perinatol 2004; 31 (4) 743-764 , vi
  • 14 Itakura A, Kurauchi O, Morikawa S, Matsuzawa K, Mizutani S, Tomoda Y. Neonatal EEG findings soon after birth in the intrauterine growth retarded infant [in Japanese]. Nippon Sanka Fujinka Gakkai Zasshi 1995; 47 (2) 109-114
  • 15 Bersani I, Auriti C, Ronchetti MP, Prencipe G, Gazzolo D, Dotta A. Use of early biomarkers in neonatal brain damage and sepsis: state of the art and future perspectives. Biomed Res Int 2015; 2015 (15) 253520 DOI: 10.1155/2015/253520.
  • 16 Massaro AN, Chang T, Kadom N , et al. Biomarkers of brain injury in neonatal encephalopathy treated with hypothermia. J Pediatr 2012; 161 (3) 434-440
  • 17 Mir IN, Chalak LF. Serum biomarkers to evaluate the integrity of the neurovascular unit. Early Hum Dev 2014; 90 (10) 707-711
  • 18 Serpero LD, Bellissima V, Colivicchi M , et al. Next generation biomarkers for brain injury. J Matern Fetal Neonatal Med 2013; 26 (Suppl. 02) 44-49
  • 19 Sadler PJ, Tucker A, Viles JH. Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. Eur J Biochem 1994; 220 (1) 193-200
  • 20 Shen XL, Lin CJ, Han LL, Lin L, Pan L, Pu XD. Assessment of ischemia-modified albumin levels for emergency room diagnosis of acute coronary syndrome. Int J Cardiol 2011; 149 (3) 296-298
  • 21 Caglar GS, Tasci Y, Goktolga U , et al. Maternal and umbilical cord ischemia-modified albumin levels in nonreassuring fetal heart rate tracings regarding the mode of delivery. J Matern Fetal Neonatal Med 2013; 26 (5) 528-531
  • 22 Dursun A, Okumus N, Zenciroglu A. Ischemia-modified albumin (IMA): could it be useful to predict perinatal asphyxia?. J Matern Fetal Neonatal Med 2012; 25 (11) 2401-2405
  • 23 Kumral A, Okyay E, Guclu S , et al. Cord blood ischemia-modified albumin: is it associated with abnormal Doppler findings in complicated pregnancies and predictive of perinatal asphyxia?. J Obstet Gynaecol Res 2013; 39 (3) 663-671
  • 24 Güzelmansur I, Ustün Y, Engin-Ustün Y, Oztürk O, Yaman H. Serum ischemia modified albumin levels in pregnancies with neural tube defects. J Reprod Med 2012; 57 (1–2) 49-52
  • 25 Abboud H, Labreuche J, Meseguer E , et al. Ischemia-modified albumin in acute stroke. Cerebrovasc Dis 2007; 23 (2–3) 216-220
  • 26 Gunduz A, Turedi S, Mentese A , et al. Ischemia-modified albumin levels in cerebrovascular accidents. Am J Emerg Med 2008; 26 (8) 874-878
  • 27 Lubchenco LO, Hansman C, Dressler M, Boyd E. Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 1963; 32: 793-800
  • 28 Landmann E, Reiss I, Misselwitz B, Gortner L. Ponderal index for discrimination between symmetric and asymmetric growth restriction: percentiles for neonates from 30 weeks to 43 weeks of gestation. J Matern Fetal Neonatal Med 2006; 19 (3) 157-160
  • 29 Kırmemiş Ö, Tatli MM, Tayman C , et al. Subclinical hypoxia of infants with intrauterine growth retardation determined by increased serum S100B protein levels. Turk J Med Sci 2011; 41 (5) 795-800
  • 30 Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004; 37 (2) 112-119
  • 31 Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38 (12) 1103-1111
  • 32 Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 2005; 100 (1) 61-64
  • 33 Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186: 421-431
  • 34 Sola A, Rogido MR, Deulofeut R. Oxygen as a neonatal health hazard: call for détente in clinical practice. Acta Paediatr 2007; 96 (6) 801-812
  • 35 Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82 (2) 291-295
  • 36 Romero FJ, Bosch-Morell F, Romero MJ , et al. Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 1998; 106 (Suppl. 05) 1229-1234
  • 37 Lee JW, Davis JM. Future applications of antioxidants in premature infants. Curr Opin Pediatr 2011; 23 (2) 161-166
  • 38 Inanc F, Kilinc M, Kiran G , et al. Relationship between oxidative stress in cord blood and route of delivery. Fetal Diagn Ther 2005; 20 (5) 450-453
  • 39 Nakai A, Oya A, Kobe H , et al. Changes in maternal lipid peroxidation levels and antioxidant enzymatic activities before and after delivery. J Nippon Med Sch 2000; 67 (6) 434-439
  • 40 Steinerova' A, Racek J, Stozicky' F, Tatzber F, Lapin A. Autoantibodies against oxidized LDL in the first phase of life. Clin Chem Lab Med 1999; 37 (9) 913-917
  • 41 Shoji H, Koletzko B. Oxidative stress and antioxidant protection in the perinatal period. Curr Opin Clin Nutr Metab Care 2007; 10 (3) 324-328
  • 42 Rosenberg A. The IUGR newborn. Semin Perinatol 2008; 32 (3) 219-224
  • 43 Salihagić-Kadić A, Medić M, Jugović D , et al. Fetal cerebrovascular response to chronic hypoxia—implications for the prevention of brain damage. J Matern Fetal Neonatal Med 2006; 19 (7) 387-396
  • 44 Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010; 42 (10) 1634-1650
  • 45 Gupta P, Narang M, Banerjee BD, Basu S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatr 2004; 4: 14-21
  • 46 Bazowska G, Jendryczko A. Concentration of malondialdehyde (MDA) in amniotic fluid and maternal and cord serum in cases of intrauterine growth retardation. Zentralbl Gynakol 1994; 116 (6) 329-330
  • 47 Gveric-Ahmetasevic S, Sunjic SB, Skala H , et al. Oxidative stress in small-for-gestational age (SGA) term newborns and their mothers. Free Radic Res 2009; 43 (4) 376-384
  • 48 Saker M, Soulimane Mokhtari N, Merzouk SA, Merzouk H, Belarbi B, Narce M. Oxidant and antioxidant status in mothers and their newborns according to birthweight. Eur J Obstet Gynecol Reprod Biol 2008; 141 (2) 95-99
  • 49 Karowicz-Bilinska A, Kedziora-Kornatowska K, Bartosz G. Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radic Res 2007; 41 (8) 870-873
  • 50 Dominguez-Rodriguez A, Abreu-Gonzalez P. Current role of ischemia-modified albumin in routine clinical practice. Biomarkers 2010; 15 (8) 655-662
  • 51 Yakut I, Tayman C, Oztekin O, Namuslu M, Karaca F, Kosus A. Ischemia-modified albumin may be a novel marker for the diagnosis and follow-up of necrotizing enterocolitis. J Clin Lab Anal 2014; 28 (3) 170-177
  • 52 Oztekın O, Kalay S, Tayman C, Namuslu M, Celık HT. Levels of ischemia-modified albumin in transient tachypnea of the newborn. Am J Perinatol 2015; 30 (2) 193-198
  • 53 Kahveci H, Tayman C, Laoğlu F , et al. Serum Ischemia-Modified Albumin in Preterm Babies with Respiratory Distress Syndrome. Indian J Clin Biochem 2016; 31 (1) 38-42
  • 54 Kahveci H, Tayman C, Laloğlu F , et al. Relationship Between Hemodynamically Significant Ductus Arteriosus and Ischemia-Modified Albumin in Premature Infants. Indian J Clin Biochem 2016; 31 (2) 231-236
  • 55 Douglas-Escobar M, Weiss MD. Biomarkers of hypoxic-ischemic encephalopathy in newborns. Front Neurol 2012; 3: 144 DOI: 10.3389/fneur.2012.00144.
  • 56 Giuseppe D, Sergio C, Pasqua B , et al. Perinatal asphyxia in preterm neonates leads to serum changes in protein S-100 and neuron specific enolase. Curr Neurovasc Res 2009; 6 (2) 110-116
  • 57 Tekgul H, Yalaz M, Kutukculer N , et al. Value of biochemical markers for outcome in term infants with asphyxia. Pediatr Neurol 2004; 31 (5) 326-332
  • 58 Verdú Pérez A, Falero MP, Arroyos A , et al. Blood neuronal specific enolase in newborns with perinatal asphyxia [in Spanish]. Rev Neurol 2001; 32 (8) 714-717
  • 59 Thornberg E, Thiringer K, Hagberg H , et al. Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 1995; 72 (1) F39-F42