Nasal Soft-Tissue Triangle Deformities

Hossam M.T. Foda, MD

Division of Facial Plastic Surgery, Otolaryngology Department, Alexandria Medical School, Alexandria, Egypt

Abstract

The soft-tissue triangle is one of the least areas attended to in rhinoplasty. Any postoperative retraction, notching, or asymmetries of soft triangles can seriously affect the rhinoplasty outcome. A good understanding of the risk factors predisposing to soft triangle deformities is necessary to prevent such problems. The commonest risk factors in our study were the wide vertical domal angle between the lateral and intermediate crura, and the increased length of intermediate crus. Two types of soft triangle grafts were described to prevent and treat soft triangle deformities. The used soft triangle grafts resulted in an excellent long-term aesthetic and functional improvement.

Keywords

► rhinoplasty
► soft triangle deformities
► revision surgery
► soft triangle graft

Patients and Methods

The study included 150 patients (96 women and 54 men), in which the ST triangle graft was used; 94 (63%) were revision cases and 56 (37%) were primary cases.

Evaluation of the surgical outcome of ST triangle grafting depended on clinical examination, comparison of pre- and postoperative photographs, and degree of patients’ satisfaction with the aesthetic and functional outcome of procedure.

All cases were operated upon using the external rhinoplasty approach to allow accurate evaluation of the alar cartilages in their normal anatomic position to detect any specific anatomic factors that may predispose to soft triangle retraction and/or notching. Evaluation included the skin thickness, strength and contour of alar cartilage, orientation of lateral crus, length and inclination of intermediate crus, and horizontal and vertical domal angles between lateral and intermediate crura (► Fig. 1).

Surgical Considerations

All cases were operated upon using the external rhinoplasty approach where bilateral marginal incisions are connected via an inverted V-shaped columellar incision. The marginal incision is wrongly placed too high and extending across the nostril apices to join the marginal incision.

The aim of this study is to identify the anatomic variations and surgical maneuvers predisposing to soft triangle deformities and to describe soft triangle grafts that can be used to prevent soft triangle retraction and/or notching in noses with high risk of developing such deformities as well as to treat preexisting soft triangle deformities in primary or revision noses.
the subsequent placement and fixation of soft triangle grafts. Evaluation of the soft triangle is done after completing all the surgical maneuvers of rhinoplasty. After the final shape, position, and orientation of tip cartilages have been attained, the nasal skin is redraped to its normal anatomic position, and the lobular skin is squeezed over the tip cartilages for a minimum of 30 seconds followed by inspecting the ST triangles for any retraction or tendency toward retraction, or any degree of notching, or asymmetries.

Soft Triangle Graft

According to the size and shape of the soft triangle, a 4 to 6 mm triangular or oval graft is cut out of the excised cephalic parts of lateral crura, which is our preferred cartilage source for the soft triangle graft as it is quite pliable, easily shaped, and holds almost no risk of showing through the skin (Fig. 3). In revision cases, with soft triangle notching and excessive scar tissue, stronger septal or conchal cartilage was used after fully beveling the edges of the graft to blend with the surrounding tissues. The graft is then secured to the caudal edge of the intermediate and lateral crura with interrupted 6/0 PDS sutures (Polydioxanone, Ethicon Inc., Somerville, NJ) in an inverted fashion to bury the knots away from the undersurface of external skin.

Extended Soft Triangle Graft

In cases where soft triangle retraction is accompanied with alar notching, a triangular graft (4–5 mm base and 12–15 mm long; Fig. 4) is fashioned out of strong septal or conchal cartilage, which is carefully thinned out and beveled, and then introduced in a precise pocket, as an alar rim graft, and extended medially, across the soft triangle, until reaching the intermediate crus where it will be fixed to it and to the caudal edge of lateral crus using interrupted 6/0 PDS inverted sutures.

At completion of the procedure, the dorsal skin flap is redraped to its normal anatomic position, and the external rhinoplasty approach incisions are closed ensuring that the marginal incisions are meticulously approximated to avoid any graft exposure and possible infection.
Results

In 108 (72%) patients, the soft triangle grafts were used to correct actual soft triangle retraction and/or notching, while in the remaining 42 (28%) patients, they were used prophylactically to guard against possible soft triangle deformities in high-risk cases. The commonest predisposing factors for developing ST deformities in our study was the wide vertical domal angle between the lateral and intermediate crura (Fig. 1) and the increased length of intermediate crura.

Out of the 150 patients, included in this study, only 122 (81%) patients were possible to follow-up for more than 1 year after surgery, and their mean period of follow-up was 30 months (range: 1–6 years). The soft triangle grafts resulted in effective long-term correction of ST retraction and notching. No cases of infection, displacement, or extrusion.

Fig. 3 Diagrammatic illustration and intraoperative photo of the soft-tissue triangle graft.

Fig. 4 Diagrammatic illustration and intraoperative photo of the extended soft-tissue triangle graft.

Fig. 5 Wide vertical domal angle due to a malpositioned lateral crus (left) or a hanging intermediate crus (right).
were encountered. However, revision surgery was required in three cases to correct a sharp visible caudal edge of the graft; those three cases had extended soft triangle grafts made of septal cartilage.

Discussion

The ST triangle is one of the areas that is usually left unattended in most rhinoplasties. Its appearance is critical to maintaining the natural contour of the nasal tip lobule. Recognizing the patient at risk of developing soft triangle retraction or notching can help implement prophylactic measures to avoid such deformities, thus achieving a satisfying rhinoplasty result. In our study, nasal skin thickness was not a significant factor in relation to soft triangle deformities as soft triangle retraction and/or notching was encountered in patients with both thin and thick nasal skin. However, the commonest predisposing factor for soft triangle deformities in our study was the wide vertical domal angle (between the lateral and intermediate crura), which may result from either a malpositioned, vertically oriented, lateral crus, or a hanging intermediate crus and infratip lobule (Fig. 5), or the use of thick grafts in infratip lobule. This widening of the vertical domal angle will stretch the soft triangle skin, thus placing the soft triangle at a high risk of retraction or

![Fig. 6](image)

Fig. 6 (A–C) Left: preoperative views of a primary patient with soft triangle retraction. Right: 2-year postoperative views of same patient after using bilateral soft triangle grafts.

![Fig. 7](image)

Fig. 7 (A–C) Left: preoperative views of a revision patient with soft triangle retraction. Right: 1-year postoperative views of same patient after using a soft triangle graft on left side.
Fig. 8 (A–C) Left: preoperative views of a revision patient with soft triangle retraction and notching. Right: 18-month postoperative views of same patient after using an extended soft triangle graft on right side.
notching. Another predisposing factor was the long intermediate crus that may be commonly encountered in the Pinocchio nose with overprojected nasal tip or may result from surgical maneuvers that lengthens the intermediate crus, as in the lateral crural steal technique.10--13 Accordingly, when using medial crural shortening techniques to deproject nasal tip, it is safer to shorten the intermediate crus and not the medial crus.13--15 Also, when performing a large lateral crus steal of more than 4 mm or performing lateral crus steal in cases with vertically oriented lateral crura as it is thin and pliable, thus eliminating the risk of the graft edges being visible or palpable. However, in most revision cases with scarring and ST notching, more rigid grafts of septal or conchal cartilage were required to achieve a stable long-lasting correction. On using such rigid grafts, meticulous thinning and beveling of all the graft edges is mandatory to avoid possible graft visibility through the thin soft triangle skin.

In the soft triangle grafts used in our study, the cartilage of choice, whenever available, was the cephalic parts of the lateral crus as it is thin and pliable, thus eliminating the risk of the graft edges being visible or palpable. However, in most revision cases with scarring and ST notching, more rigid grafts of septal or conchal cartilage were required to achieve a stable long-lasting correction. On using such rigid grafts, meticulous thinning and beveling of all the graft edges is mandatory to avoid possible graft visibility through the thin soft triangle skin.

The use of soft triangle grafts resulted in effective correction of soft triangle deformities in primary (\textit{\textbf{Fig. 6}}) as well as in revision cases (\textit{\textbf{Fig. 7}}). Additionally, the extended soft triangle grafts successfully treated any associated alar rim notching by its downward mobilization of alar rims (\textit{\textbf{Fig. 8}}), except in severe cases with deficient vestibular lining that needs to be lengthened by composite grafts.16,17 The extended soft triangle grafts can also reverse the functional problems of lateral crus malpositioning18 by strengthening the flaccid alae, making them more resistant to inspiratory collapse and thus reducing the need for bulky lateral crus grafts.19,20

\section*{References}
\begin{enumerate}
\item Daniel RK. Secondary rhinoplasty following open rhinoplasty. Plast Reconstr Surg 1995;96(7):1531–1546
\item Sheen JH. Aesthetic Rhinoplasty. St. Louis, MO: Mosby; 1978: 432–462
\item Constantian MB. Four common anatomic variants that predispose to unfavorable rhinoplasty results: a study based on 150 consecutive secondary rhinoplasties. Plast Reconstr Surg 2000;105(1):316–331, discussion 332–333
\item Lipsett EM. A new approach surgery of the lower cartilaginous vault. AMA Arch Otolaryngol 1959;70(1):42–47
\item Tardy ME Jr, Toriumi D. Alar retraction: composite graft correction. Facial Plast Surg 1989;6(2):101–107
\item Guyuron B. Alar rim deformities. Plast Reconstr Surg 2001;107(3):856–861
\end{enumerate}