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Humanparainfluenza viruses (HPIVs) are an important cause
of respiratory illness in children and adults with awide range
of clinical manifestations including colds, croup, bronchioli-
tis, and pneumonia. Seasonal HPIV virus epidemics result in a
significant burden of disease in children and account for 40%
of pediatric hospitalizations for lower respiratory tract ill-
nesses (LRTIs) and 75% of croup cases.1–6 Immunity resulting
from disease in childhood is incomplete and reinfection
occurs throughout adult life, although symptoms are typi-
cally mild and self-limited. However, in immunocompro-
mised or elderly adults, infection may progress to the lower
respiratory tract and cause severe and life-threatening pneu-

monia.7–10 Though sensitive molecular diagnostics are now
available to rapidly diagnosis parainfluenza infection, effec-
tive therapies are still needed and treatment remains sup-
portive. In this review, we will summarize the epidemiology,
clinical manifestations, diagnostic methods, and treatment
options for HPIV infection.

Virology

Parainfluenza viruses are single-stranded, enveloped RNA
viruses of the Paramyoviridaie family. There are four major
serotypes of HPIV, noted as serotypes 1 to 4 with human
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Abstract Human parainfluenza viruses (HPIVs) are single-stranded, enveloped RNA viruses of the
Paramyoviridaie family. There are four serotypes which cause respiratory illnesses in
children and adults. HPIVs bind and replicate in the ciliated epithelial cells of the upper
and lower respiratory tract and the extent of the infection correlates with the location
involved. Seasonal HPIV epidemics result in a significant burden of disease in children
and account for 40% of pediatric hospitalizations for lower respiratory tract illnesses
(LRTIs) and 75% of croup cases. Parainfluenza viruses are associated with a wide
spectrum of illnesses which include otitis media, pharyngitis, conjunctivitis, croup,
tracheobronchitis, and pneumonia. Uncommon respiratory manifestations include
apnea, bradycardia, parotitis, and respiratory distress syndrome and rarely disseminat-
ed infection. Immunity resulting from disease in childhood is incomplete and reinfection
with HPIV accounts for 15% of respiratory illnesses in adults. Severe disease and fatal
pneumonia may occur in elderly and immunocompromised adults. HPIV pneumonia in
recipients of hematopoietic stem cell transplant (HSCT) is associated with 50% acute
mortality and 75% mortality at 6 months. Though sensitive molecular diagnostics are
available to rapidly diagnose HPIV infection, effective antiviral therapies are not
available. Currently, treatment for HPIV infection is supportive with the exception of
croup where the use of corticosteroids has been found to be beneficial. Several novel
drugs including DAS181 appear promising in efforts to treat severe disease in
immunocompromised patients, and vaccines to decrease the burden of disease in
young children are in development.
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HPIV4 subdivided into two genera (HPIV4a and HPIV4b).11

HPIV1 and HPIV3 are members of the genus Respirovirus and
the genus Rubulavirus includes HPIV2 and HPIV4. Parain-
fluenza virions are pleomorphic, ranging in diameter from
150 to 200 µm (►Fig. 1).12,13 They contain a single, negative-
sense RNA strand which encodes six essential proteins in a
conserved order: the nucleocapsid protein (NP), the phos-
phoprotien (P), the matrix protein (M), the fusion glycopro-
tein (F), the hemagglutinin neuraminidase (HN) glycoprotein,
and the RNA polymerase (L).

The HN and fusion glycoproteins are surface proteins
which mediate attachment to the sialic acid residues on the
surface of host epithelial cells (HN) and fusion of the viral
envelope with the host cell membrane (F), respectively
(►Fig. 2).13,14 The HN protein also facilitates release of
new virions from the cell by cleaving the sialic acid resi-
due.15,16 These two proteins are the major targets for
neutralizing antibodies. The matrix protein coats the inner
surface of the envelope. The NP protein binds and coats the
viral RNA, creating a template for the RNA-dependent RNA
polymerase, consisting of the P and L proteins, to facilitate
transcription. The P gene also encodes additional proteins
which vary among the four serotypes and are not essential
for virus replication.17HPIV1 and HPIV3 RNAs encode short
C proteins and HPIV2 RNA encodes a V protein both of
which suppress the host immune response by decreasing

type 1 interferon activity. A third nonessential protein, D
protein, is expressed by HPIV3, though the relevance and
function of this protein remains unclear. Replication occurs
in the cytoplasm of the host cell and once produced the
negative-sense RNA strands are packaged and exported as
new virions.

The hemagglutinin neuramindase proteins are more sta-
ble for parainfluenza viruses compared with those of influ-
enza A viruses. However, antigenic differences have been
noted over time, producing strains serologically and geneti-
cally different from earlier isolates and impeding vaccine
development.11,18–20

Pathogenesis

Parainfluenza viruses bind and replicate in the ciliated epi-
thelial cells of the upper and lower respiratory tract.13,21

Infection begins in the nose and oropharynx and then spreads
to the lower airways with peak replication 2 to 5 days after
initial infection.22 The extent of infection correlates with
location, that is, cold symptoms are associated with infection
in the upper airways, infection of the larynx and trachea
results in croup and bronchiolitis, and pneumonia occurs
with replication in the distal airways.23,24 Once epithelial
cells of the small airways become infected, inflammatory
infiltrates develop and the host immune response is thought
to contribute to disease pathogenesis.25,26 The classic signs of
croup include hoarseness, cough, and stridor which are due to
obstruction from inflammation of the subglottic region of the
trachea (►Fig. 3).27 This area is less distensible than other
parts of the trachea because it is encircled by the cricoid
cartilage. The impeded airflow produces the high pitched
inspiratory vibrations known as stridor and increasedworkof
breathing due to this obstruction may lead to fatigue and
hypoxia and eventually respiratory failure in severe cases.
Adult illness is generallymild, although airway hyper respon-
siveness may occur in persons with asthma due to release of
cytokines and chemokines.28

Immunology

Host defense against HPIV is mediated by both humoral and
cellular immunity.11 Serum antibodies directed against the
two surface glycoproteins, F and HN, are neutralizing and
protective against challenge.29,30 Secretory immunoglobulin
A (IgA) also develops after natural infection and has been
shown to neutralize virus and ameliorate disease.11 Neutral-
izing antibody appears to be serotype specific with little cross
protection afforded by antibodies between HPIV serotypes 1
to 4.31 Cytotoxic T lymphocyte responses are important for
clearance of virus, and T cell epitopes have been demonstrat-
ed on the HN, P, and NP proteins of HPIV.11,32–34 Repeated
infections are often needed to fully protect a child’s lower
respiratory tract from HPIV infection and eventual protection
may be a combination of high levels of neutralizing antibody
and cellular immunity.11,35 Immunity to HPIV is incomplete
and reinfections with any of the HPIV serotypes can occur
throughout life.

Fig. 1 Structure of human parainfluenza virus serotypes 1 to 4.
Parainfluenza viruses are single-stranded, enveloped RNA viruses and
virions are pleomorphic, ranging in diameter from 150 to 200 µm. The
RNA encodes six essential proteins in a conserved order: the nucleo-
capsid protein (NP), the phosphoprotien (P), the matrix protein (M),
the fusion glycoprotein (F), the hemagglutinin neuraminidase glyco-
protein (HN), and RNA polymerase (L). (Reproduced with permission
from Moscona A. Entry of parainfluenza virus into cells as a target for
interrupting childhood respiratory disease. J Clin Invest
2005;115:1688–1698.13)
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Epidemiology

HPIVs were first isolated from children with croup in 1955
and were referred to as croup-associated viruses.36,37 They
have been shown to cause upper respiratory tract infection
(URTI) in children and adults, and LRTI in children younger
than 5 years and elderly or immunocompromised adults,
demonstrating a distinctly bimodal pattern of age distribu-
tion.38 Transmission occurs through direct person-to-person
contact or from large droplets, and household outbreaks have
been well described in the literature, as have outbreaks in
nursing home and daycare facilities.39

Parainfluenza virus infections occur throughout the world
with seasonal variations in serotype-specific rates of infec-
tion which is determined by region.38 Seasonal patterns of
infection noted in the northern hemisphere are absent in
tropical and subtropical regions with little variation in infec-
tion rates throughout the year.40 In the United States, HPIV1
typically causes biennial outbreaks in odd-numbered years
during the fall and may be responsible for 50% of croup cases
in the United States during epidemic seasons (►Fig. 4).3,6,11

Epidemics of HPIV2 infections occur annually in the fall and
HPIV3, and the most prevalent serotype causes seasonal
outbreaks in the spring, usually following influenza epidem-
ics.38 In years when HPIV1 is not actively circulating, a second

smaller HPIV3 epidemic may occur in the fall. In contrast, the
epidemiology of the HPIV4 infections has not been well
studied with only few reports of small number viruses
isolated from children and adults.41–43 This is due to the
fact that illness related to HPIV4 infection is often mild and
subclinical and the virus more difficult to detect.41,43–45

Other trends in rates and severity of infection with HPIV
havebeen described including reduced riskof severe illness in
breast-fed infants and after pneumococcal vaccination. In-
creased risk of progressive to severe illness is noted in
immunocompromised hosts, especially in those with hema-
tologic malignancies, hematopoetic stem cell transplant
(HSCT), or solid-organ transplantation. Additionally, socio-
economic factors such as malnutrition, overcrowding, vita-
min A deficiency, and environmental smoke or toxins have
also been shown to predispose children to HPIV infec-
tions.11,46–49 Finally, gender and ethnicity also appear to
play a role, as PIV-associated bronchiolitis reportedly occurs
more often in nonwhite males.

Serotype prevalence: HPIV3 is the most commonly isolated
serotype in symptomatic disease for both children and
adults.38 In the National Respiratory and Enteric Viruses
Surveillance System study conducted from 1990 to 2004,
HPIV3 was the most commonly identified serotype (52%),
followed by HPIV1 (26%), HPIV2 (12%), and HPIV4 (2%).38

Fig. 2 Cycle of attachment, fusion, and replication for parainfluenza viruses. The HN glycoproteins attach to sialic acid residues on the surface of
host epithelial cells and fusion glycoprotein mediate fusion of the viral envelope with the host cell membrane. After attachment, the genetic
material is uncoated and replication occurs in the cytoplasm of host cells. The NP protein binds the viral RNA, creating a template for the RNA-
dependent RNA polymerase, consisting of the P and L proteins. Once replication is completed, HN and F proteins are transferred to the host cell
membrane which forms the envelope for new virons which is coated on the inner surface by the matrix protein. The HN protein then facilitates
budding and release of new virions from the cell by cleaving the sialic acid residues. (Reproduced with permission from Moscona A. Entry of
parainfluenza virus into cells as a target for interrupting childhood respiratory disease. J Clin Invest 2005;115:1688–1698.13)
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However, during epidemic years, HPIV1 is associated with
significant disease burden and hospitalizations in chil-
dren.3,4,6,11,50,51 Moreover, several studies have demonstrat-
ed the importance of this virus as a cause of yearly
hospitalizations in adults and nursing outbreaks associated
with bacterial coinfection and fatal pneumonia.52 Acquisition
of HPIV3 usually occurs earliest in life with 50 and 92% of
children infected by 1 and 3 years of age, respectively
(►Fig. 5).1,5 Primary infection with HPIV1 and HPIV2 occurs
later in childhood (age 2–6 years).

Children: There are more than 5 million cases of children
with LRTI in theUnited States eachyear, andHPIVaccounts for
20 to 40% of these illnesses.1,2,53 Population-based studies
estimate 1.9 to 12 per 1,000 children younger than 1 year and
0.5 to 2.0 per 1,000 children aged 1 to 4 years are infected each
year with HPIV.54–56 In outpatient studies, HPIV accounts for
approximately 17% of viral respiratory illnesses identified in
children (18% of upper respiratory illnesses,>20% of LRTI, and
>50% of croup cases).5,53 The U.S. 2000 Census estimates that
rates ofmedically attended acute respiratory illness, LRTI, and

hospitalization in children younger than 5 years associated
with HPIV3 infection were 3.2 million, 1.1 million, and
29,000, respectively.57 Other reports estimate 7,600 to
48,000 pediatric hospitalizations annually in the United
States, and 7% of pediatric hospitalizations for febrile or
respiratory illnesses in children younger than 5 years are
due to HPIV. In composite, pediatric hospitalizations and
emergency room visits due to HPIV constitute a cost of
more than $200 million annually.4

Adults: New molecular viral diagnostics have resulted in
greater understanding of the impact of HPIV infections in
adult populations and reinfection has been found to be
common.58–62 PIV infections account for 1 to 15% of respira-
tory illnesses in adults with infrequent reports of pneumonia
in young adults and higher risk for severe disease in frail older
adults.38,60 It is estimated that 2 to 11.5% of adult hospital-
izations for respiratory illnesses are due to HPIV infec-
tion.59,61,63–65 Furthermore, HPIV is frequently implicated
in acute exacerbations of chronic obstructive pulmonary
disease with HPIV usually the 2nd or 3rd most commonly

Fig. 3 Pathogenesis and disease progression of HPIV-associated croup. (Adapted from Bower J and McBride JT, Principles and Practices of
Infectious Diseases. 8th Edition 2015.27)
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detected virus (►Fig. 6).66–69 HPIV infection has also been
reported in long-term care facilities with prospective studies
documenting 4 to 14% of nursing home residents infected
annually. Fatal bronchopneumonia is an infrequent but re-
ported outcome in this population and has been associated
with HPIV1 outbreaks.52,60,70–76 During epidemic seasons,
HPIV1 and HPIV3 outbreaks have been reported and with
very high attack rates.52,73 One report from an Alabama

nursing home described attack rates of 22 and 28% in
residents and employees, respectively.71 In an outbreak at a
California state mental hospital, 56% of residents were
infected.71

Finally, severe LRTI disease and pneumonia have been
reported in immunocompromised hosts, particularly patients
with hematologic malignancies and HSCT recipients. Reports
indicate an incidence of HPIV-associated respiratory illness in

Fig. 5 Age distribution of parainfluenza serotypes 1, 2, and 3 viral infections in outpatient children. The y-axis represents the percentage of
children for whom infection with the three parainfluenza virus serotypes was detected per age group. Vertical lines identify serotype with the
highest incidence of infection per age group. (Adapted from Knott, AM, Long, CE, et al. Parainfluenza viral infections in pediatric outpatients:
seasonal patterns and clinical characteristics. J Pediatr Infect Dis 1994, 13:269–73.5)

Fig. 4 The percentage of tests positive for human parainfluenza virus (HPIV) serotypes 1, 3, 2, and 4 reported to the National Respiratory and
Enteric Viruses Surveillance System (NREVSS), by week, July 1990 to June 2004. (Reproduced from Fry AM, Curns AT, Harbour K, et al. Seasonal
trends of human parainfluenza viral infections: United States, 1990–2004. Clin Infect Dis 2006;43:1016-1022.38)
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the HSCT population of 2 to 7%, with HPIV3 accounting for
90% of infections and nosocomial epidemics reported in bone
marrow transplant wards during peak seasons.7–10 Pneumo-
nia has been reported in 24 to 55% of HSCT patients infected
with HPIV and is associated with up to 50% acute mortality
rate and 75% mortality rate at 6 months.7,77–79 Though not as
frequently reported in patients with solid-organ transplants,
severe disease has also been documented in this population.
HPIV infection may result in severe complications for lung
transplant recipients including bronchiolitis obliterans, re-
duced lung function, and allograft rejection.80–82

Clinical Manifestations

Parainfluenza viruses are associated with both upper and
lower respiratory tract disease in children and adults, and the
spectrum of illness typically includes otitis media, pharyngi-
tis, conjunctivitis, croup, tracheobronchitis, and pneumonia.
Uncommon respiratory manifestations include apnea, brady-
cardia, parotitis, and respiratory distress syndrome. Although
HPIV primarily infects respiratory tissues, disseminated in-
fection has been described as having a variety of illnesses
affecting other organ systems, including neurologic, renal,
and rheumatologic diseases.

Pediatric disease: In children, 40 to 60% of HPIV infections
result in URTIs (colds and pharyngitis) and approximately 30
to 50% of these illnesses are complicated byotitismedia.5,53,83

URTI is the predominant presentation for all serotypes and
less than 20% of HPIV infections result in lower respiratory
tract disease other than croup.

HPIV1 and HPIV2 are the leading causes of croup, account-
ing for 60 to 75% of croup illnesses and contributing 27,000 to
66,000 pediatric hospitalizations yearly (►Fig. 7).3–6,53 Croup

caused by HPIV2 is generally milder but can result in signifi-
cant airway compromise and hospitalization. In contrast,
HPIV3 infection is more commonly associated with LRTI
than other serotypes causing bronchiolitis and pneumonia
in neonates and infants with illness that is clinically indistin-
guishable from RSV infection.84 Illness related to HPIV4
infection appears to be most commonly associated with
URTI symptoms.

Croup (acute laryngotracheitis and acute laryngotracheo-
bronchitis): The characteristic anatomic finding of croup is
inflammation of the larynx and trachea otherwise known as

Fig. 7 Proportion of clinical syndromes associated with parainfluenza
infection in children found in a survey of respiratory illnesses in
children in an outpatient setting with a known viral etiology. Upper
respiratory tract infection (URTI) indicates colds with or without fever.
NOS indicates an undifferentiated febrile illness. (Adapted from Knott,
AM, Long, CE, et al. Parainfluenza viral infections in pediatric out-
patients: seasonal patterns and clinical characteristics. J Pediatr Infect
Dis 1994, 13:269–273.5)

Fig. 6 Comparison of influenza, parainfluenza, and RSV infections in hospitalized patients with chronic underlying conditions. Chronic pulmonary
conditions included asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, sarcoidosis, and malignancy or asbestosis. Other
chronic conditions included congestive heart failure, metabolic disease (i.e., diabetes), chronic anemia, chronic renal disease, andmalignancies or
immunocompromising conditions. The percent of viruses is shown distributed by age group. Black, respiratory syncytial virus (RSV); white,
influenza; gray, human parainfluenza virus (HPIV). (Adapted from Glezen, WP et al. Impact of respiratory virus infections on persons with chronic
underlying conditions. JAMA 2000;283(4):499–505.67)
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laryngotracheitis. When inflammation extends into the bron-
chi (laryngotracheobronchitis), lower airway signs such as
wheezing and air trapping also occur. These two terms are
used interchangeably to represent croup disease and are
often clinically indistinct. Extension of disease into the lower
airways increases the risk for bacterial infection with typical
respiratory pathogens (Staphylococcus aureus, Strepotococcus
pneumonia,Morxaxella catarrhalis, and Haemophilus influen-
za) which may present as mucopurulent bacterial tracheitis
or pneumonia.

Croup incidence peaks at 1 to 2 years of age and reports
indicate that disease occurs more frequently in male children
who have a 1.43 higher risk of having croup than their female
counterparts, with the highest risk to boys noted between the
ages of 6 and 12 months.3 Epidemiological studies in Mil-
waukee have also reported increased risk for disease in white
children compared with black children. Approximately 8 to
15% of children with croup will require hospitalization and 1
to 3% will require intubation.55,85–88

Children with croup typically present initially with fever,
hoarseness, and rhinorrhea with or without pharyngitis
which progresses in 12 to 48 hours to the characteristic
hoarse “barking” cough. Laryngeal obstruction follows in
moderate to severe cases, manifested by inspiratory stridor.
The characteristic “steeple sign” can be seen on chest or neck
radiograph (►Fig. 8). As airway obstruction progresses, chest
wall retractions are generally accompanied by worsening
agitation and increased inspiratory effort which paradoxical-
ly exacerbates the obstructive process. Hypoxia, cyanosis, and
respiratory fatigue may develop, requiring intubation which
can rarely be fatal (<0.5% of intubated patients).89 The
diagnosis of croup is made clinically and severity measured
by five clinical factors known as the Westley scale: mental
status, the presence of absence of pallor or cyanosis, the
presence of absence of inspiratory stridor at rest, the degree
of chest wall retractions, and the amount of air entry
(►Table 1).90 Mild croup is characterized by the absence of
stridor at rest and can often be managed symptomatically at
home. In contrast, children with moderate to severe croup
will present with inspiratory stridor at rest accompanied by
variable degrees of respiratory compromise and should be
evaluated in an acute care setting. Symptoms of croup typi-
cally resolve in 1 to 3 days with appropriate therapy (see
section “Treatment”) but may persist for up to 7 days. Wors-
ening symptoms after a period of improvement should
prompt evaluation for bacterial complications.91

Bronchiolitis: Bronchiolitis results from infection of the
small airways (bronchioles) of infants and young children and
90% of illnesses are due to viral infection, mostly often with
respiratory syncytial virus (RSV).92 However, all four HPIV
serotypes can cause this syndrome and 10 to 20% of con-
firmed viral bronchiolitis infections due to HPIV1 and
HPIV3.47,56 Typical illness begins with a prodrome of fever
and nasal congestion 1 to 3 days prior to the onset of lower
respiratory signs and symptoms (cough, expiratory wheez-
ing, tachypnea, rales, and chest wall retractions). Symptoms
peak at 5 to 7 days and 90% of children without underlying
cardiopulmonary disease recover from bronchiolitis within

21 days, with a median duration of symptoms of 8 to
15 days.91,93 However, 10% of children will have persistent
symptoms of cough andwheezing for 1 to 2 weeks longer and
disease may be more severe and the course prolonged in
premature or young infants and those with comorbid

Table 1 Westley croup severity score

Clinical feature Score

Mental status 0 ¼ Normal
5 ¼ Altered

Cyanosis 0 ¼ None
4 ¼ With agitation
5 ¼ At rest

Stridor 0 ¼ None
1 ¼ With agitation
2 ¼ At rest

Air entry 0 ¼ Normal
1 ¼ Decreased
2 ¼ Markedly decreased

Retractions 0 ¼ None
1 ¼ Mild
2 ¼ Moderate
3 ¼ Severe

Notes: � 2, mild; 3–7, moderate; 8–11, severe; �12, impending respi-
ratory failure.

Fig. 8 Anterior/Posterior chest radiograph demonstrating tapering of
the upper trachea or “steeple” sign seen in parainfluenza-associated
croup infections. Arrows indicate area of obstruction resulting from
inflammation of the subglottic region of the trachea. (Reproduced
with permission from Huang,Chun-Chao and Shih, Shin-Lin. Steeple
Sign of Croup. N Engl J Med 2012; 367:6.207)
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conditions (i.e., bronchopulmonary dysplasia, congenital
heart defects, or immunosuppression). Children with severe
disease are at risk for complications including apnea and
respiratory failure requiring mechanical ventilation.92

Pneumonia: Pneumonia in children classically presents
with fever, cough, and rales with infiltrates or consolidation
on chest radiographs. Though all four parainfluenza sero-
types have been associated with pneumonia in children,
HPIV1 and HPIV3 are most often implicated, accounting for
1 to 6% and 2 to 12% of HPIV-related hospitalizations, respec-
tively.11,47,56 The clinical syndrome of HPIV pneumonia in
children is not distinctive. Pneumonic infiltrates are usually
described as bilateral interstitial infiltrates, though alveolar
infiltrates can be seen.94 Although data are limited, bacterial
complications of HPIV in a normal child appear uncommon
(<15%) and may be associated with severe and necrotizing
pneumonia (►Fig. 9).94,95 Treatment is supportive and ex-
pectation of recovery is similar to that for bronchiolitis
disease.

Tracheobronchitis: Tracheobronchitis is a term used to
describe disease that does not fit well into other classical
syndromes but generally involves inflammation of the large
airways, that is, trachea and bronchi, in the absence of
symptoms of croup and radiologic findings of pneumonia.
In addition to upper respiratory tract symptoms and fever,
patients may have a productive cough, wheezing, and rhon-
chi. It is generally a clinical syndrome seen in older children
and associated with HPIV viral infection in a fourth of all
cases.47 HPIV3 is most commonly associated with this syn-
drome, though some reports have noted a pattern of large
airway disease with HPIV4 infections as well.96

Adult disease in immunocompetent hosts: HPIV infections
in healthy adults are generally mild, self-limited URTIs with
typical cold symptoms (rhinorrhea, cough, and sore throat)
with or without fever.56,58,60,61,73,97,98 Otitis media and
sinusitis may occasionally complicate adult infection.99

HPIV may also cause pneumonia, particularly in frail older
adults.59,64,66,100–102 Signs and symptoms of HPIV infection

are indistinguishable from other viruses such as influenza
and RSV and may be overshadowed by findings associated
with exacerbations of chronic medical conditions such as
chronic obstructive pulmonary disease (COPD) and conges-
tive heart failure.103 Radiographic findings consist of patchy
unilateral or bilateral infiltrates, though 50% of HPIV-associ-
ated pneumonia may be complicated by bacterial infec-
tion.104 HPIV infection is also increasingly recognized as a
cause of acute exacerbation of COPD and asthma.68,69,105–110

Infection may result in severe illness, deterioration of lung
function, and prolonged hospitalization requiring ICU care
and mechanical ventilation.

Immunocompromised hosts: Parainfluenza viruses cause
severe infections in immunocompromised children and
adults and have been associated with significant morbidity
and mortality. Recent studies in HSCT and leukemic patients
estimated the incidence of symptomatic HPIV infections to be
between 2 and 7%.7,9,48,78,111 The majority of these illnesses
are community acquired (80%), though outbreaks in HSCT
wards have been described with 90% due HPIV3.77,78

At presentation, most patients (70%) will have upper respi-
ratory tract symptoms of cough, rhinorrhea, and sore throat
with or without fever.112 The presence of URTI symptoms may
be the best clue that illness is due to a respiratory virus and
distinguishes infection from the myriad of other infectious
agents affecting this population.111 Progression to lower respi-
ratory tract involvement occurs in 43% of HSCT recipients and
55% of leukemia patients and results in high rates of mortality
(37–50%).7,9,77,78,111 Mortality hazard ratio for HPIV-related
URTI is 1.3 compared with 3.4 for LRTI.78 In a recent retrospec-
tive report, 30% of the 80 leukemic and 120 HSCT patients at a
large cancer center diagnosed with HPIV infections presented
with pneumonia. Of thosewith URTI symptoms initially, 61% of
leukemic patients and 39% of HSCT subjects progressed to
pneumonia during their illness.112 In children, similar rates
of progression to LRTI disease have been reported with one
retrospective studyfinding that 47% of all viral infections in 274
pediatric HSCT recipients were caused by HPIV viruses and of

Fig. 9 Chest radiograph and chest computed tomography (CT) of a 5-year-old child with HPIV3-associated necrotizing community-acquired
pneumonia. Viral PCR of a nasopharyngeal sample was positive for HPIV3. Blood culture was positive for methicillin-resistant Staphylococcus
aureus. Chest radiograph (A) reveals bilateral, multifocal infiltrates and a small left pleural effusion. (B) CT confirms dense consolidation in the left
lower lobe, right upper, and right lower lobes; numerous satellite nodules in the left lower and upper lobe bronchiectasis; and multifocal cystic
lesions bilaterally. (Reproduced with permission from Derek J. Williams, and Samir S. Shah J Pediatr Infect Dis 2012;1:1–5.94)
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those, 41% had pneumonia.113 Similarly, risk for severe disease
is also increased in children undergoing chemotherapy, with
the highest risk noted in children younger than 2 years with
hematologic malignancies.114 Other factors associated with
progression to lower respiratory tract disease include dose-
dependent treatment with steroids, allogenic SCT (vs. autolo-
gous), time from transplantation (majority of cases in HSCT
patients occur in <100 days posttransplantation), presence of
lymphopenia, and pediatric age group.7,78,114

HSCT and leukemic patients with HPIV pneumonia or
pneumonitis will commonly present with fever (77–89%),
cough, (62–85%), dyspnea (43–82%), sputum production
(67%), nasal congestion or rhinorrhea (52%), and sore throat
(30%).7,77 Chest imaging may reveal a wide variety of findings,
including unilateral or bilateral infiltrates on chest radiograph
and CT scan findings of interstitial infiltrates, groundglass
opacities, peribronchial nodules, and/or airspaces consolida-
tions (►Fig. 10).115,116 Diagnosis is made by identifying HPIV
in respiratory secretions. Appropriate workup should be ob-
tained to rule out bacterial and fungal copathogens because
they frequently (26–61%) complicate HPIV infections and
contribute significantly to mortality in this population.7,77–79

In one report from a single center, 53% of patients with HPIV3
pneumonia were found to be coinfected with other pathogens
and mortality in this group was 35% at 30 days and 75% at
180 days.78 In another study reporting 37%mortality associat-
ed with PIV pneumonia, 7 of the 10 patients who died had
concurrent infections with other respiratory pathogens.7 The
most frequently isolated organisms are Aspergillus fumigatus,

often associated with fatal pneumonia, cytomegalovirus, and
Pseudomonas aeruginosawith a variety of other gram-negative
bacterial pathogens reported as well.7,77–79

Limited studies have demonstrated a more modest impact
of HPIV infections in solid-organ transplants recipients. An-
ecdotal reports have described isolated cases of HPIV infec-
tion associated with acute rejection in renal and liver
transplant patients.117,118 However, the majority of studies
have assessed disease associated with HPIV infections in lung
transplant patients with incidence ranging from 5 to 12% and
rates of lower respiratory tract disease of 10 to 66%.9,80,119,120

Notably, infection has been shown to have long-term com-
plications in this population, including decreased lung func-
tion, bronchiolitis obliterans, and links to allograft
rejection.80–82 In one study, 82% of lung transplant patients
with acute PIV infections who underwent transbronchial
biopsy were shown to have acute allograft rejection and
32% subsequently developed bronchiolitis obliterans.80

Finally, increased risk of infection and persistent or severe
disease has also been demonstrated in other special popula-
tions including children with other immunodeficiency syn-
dromes such as severe combined immunodeficiency
syndrome (SCIDS) who may have atypical presentations
like parotitis or rapidly fatal giant cell pneumonia.121 Though
HPIV disease has not been well described in HIV populations,
the correlation between lymphopenia and increased morbid-
ity andmortality in leukemic and HSCT patients suggests that
risk for severe disease likely increases with T cell depletion.

Other syndromes: Although HPIV infection is generally
associated with respiratory tract illnesses, nonrespiratory
complications of HPIV infection have been described in
both adults and children. Parotitis may be an unusual mani-
festation of primary infection in children and has been
described with HPIV1 and HPIV3 infections.122,123 Infants
with HPIV infection also may develop apnea and bradycardia,
and infection in older children has been associated with
exacerbation of nephrotic disease, hepatitis, and fatal rhab-
domyolsis.11,124–128 In adults, HPIV3 has been associated
with myocarditis and pericarditis.129

Neurologic disease: Reports have described both acute and
chronic neurological disease in children and adults associated
with HPIV infections. Febrile seizures have been reported in
young children, occurring with 62% of HPIV4 infections and
17% of PIV3 infections, and ventriculitis and encephalitis have
been described in a few isolated cases.124,130,131Meningitis is
a rare complication in both children and adults.132–134 Inter-
estingly, PIV infections have also been linked serologically to
multiple sclerosis disease in adults, though evidence of true
pathogenesis is lacking and MS has similarly been associated
with other viral infections. Finally, PIV3 was isolated from the
CSF of an adult with Guillain-Barre syndrome and other
demyelinating syndromes have been described in adults
with concurrent or recent PIV infections.132,135

Diagnosis

Laboratory diagnosis: Although the clinical syndrome of
croup is commonly associated with HPIV1, most other

Fig. 10 Patterns found on high-resolution chest computed tomog-
raphy (CT) in hematopoietic stem cell transplant recipients with HPIV3
pneumonia. (A) Peribronchial nodules. (B) Nodules and associated
consolidation. (C) Very small peribronchial nodules in the left upper
lobe. (D) Multiple small peribronchial nodules and ground-glass
consolidation. (Reproduced with permission from Ferguson PE, et al.
Clin Infect Dis 2009;48:905–909.116)
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presentations of HPIV infection do not have unique features
which allow viral infection to be diagnosed on clinical
grounds alone. Thus, if the specific viral diagnosis is desired,
laboratory testing is needed and can be accomplished by viral
detection or host antibody response to infection.

Sample collection: Detection of virus whether by culture,
fluorescent antibody assays, or molecular testing depends on
the collection of an adequate sample. Several sample types
are acceptable for testing and include nasopharyngeal swabs
(NPS), combined nose and throat swabs (NTS), nasal washes,
sputum, and bronchoalveolar lavage (BAL). The sample type
will in part depend on the age and immune status of the
patient and the severity and stage of the illness. Nasal washes
which are commonly used in children are poorly tolerated by
acutely ill older adults and NTSs are reasonable alternate
specimens to collect.103 If swabs are to be collected, it is
recommended that flocked swabs be used in preference to
cotton swabs due to enhanced yield.136 The timing of sample
collection during illness may also be important with upper
airway samples being positive early in illness, whereas, later
in illness, it may be more important to test lower airway
secretions such as sputum and BAL fluid. In a study of
hospitalized patients with documented parainfluenza ill-
nesses, molecular testing of sputum added 33% to the diag-
nostic yield of collecting NTS alone.137 BAL is generally
reserved for severely ill or immunocompromised patients.

Viral culture: For many years, viral culture has been
considered the gold standard for diagnosis. Viral isolation
on cell culture depends on the development of cytopathic
effect (CPE) or detection of hemadsorption (HAD) to the
monolayers.138,139 Confirmatory testing of CPE and HAD is
accomplished through the use of viral-specific fluorescent-
labeled monoclonal antibodies (Mab). Traditional viral cul-
ture demands an experienced clinical laboratory, and time to
diagnosis limits clinical utility (5–14 days).138 In an attempt
to simplify the process, several commercially available mixed
cell lines such as “R-Mix” have been used to successfully grow
a variety of respiratory viruses including HPIV.139 To acceler-
ate the time to identification, the shell vial culture system
utilizes low speed centrifugation of the inoculum on mono-
layerswithMab staining at 24 hours and expedites the time to
diagnosis.140

Fluorescent antibody assays: Detection of viral antigens
performed directly on clinical samples has been used since
the 1970s as a rapid method for viral diagnosis.139 Simple
commercial colorimetric enzyme-linked immunoassays
(EIAs) have been developed for RSV and influenza and
perform reasonably well in children with primary infection
where viral titers are high. No commercial rapid antigen test
for HPIV is available. Direct detection of HPIV 1–3–specific
immunofluorescent-labeled antibodies can be done with
sensitivities of 63 to 95%; however, antibodies to HPIV-4
are generally not available.11,139,141 Thus, when clinical re-
sources are limited, testing of clinical samples by immunoflu-
orescent assay (IFA) is a reasonable alternative.

Molecular assays: If available, molecular assays such as
polymerase chain reaction (PCR) assays are the diagnostic test
of choice for HPIV infection on the basis of optimal sensitivity,

specificity, and rapidity of diagnosis.21,142–144 Though PCR
testing for the diagnosis of HPIV infection has been clearly
shown to have superior sensitivity to viral culture and IFA
testing, the clinical utility of PCR assays was at first limited by
cost and the need for technical expertise to use for research
and in tertiary-care facilities.145–148 However, molecular
testing has become more widely available with the develop-
ment of commercial assays simplified for use in general
clinical microbiology laboratories with rapid turnaround
times of approximately 1 hour.144,149,150 Initially developed
as single-target assays, HPIV molecular assays are currently
often imbedded in multiplex real-time PCR assays which test
for respiratory viral pathogens including HPIV 1–4, with
minimal loss of sensitivity for individual targets, though
some variation in the sensitivity for different HPIV serotypes
exists.151,152 This variation may in part be due to the fact that
though PCR primers are generally directed toward the HN
gene, the specific sequence used varies by assay. Low viral
loads can also be detected with PCR assays which may be
important for early therapy and infection control in trans-
plant populations.146 Several sample types can be used for
PCR testing including NPS, NTS, nasal washes, and BAL fluid.
Sputum has been rarely used in molecular assays due to the
viscous nature of the specimen, but new techniques have
been described which allow the use of sputum samples for
fully automated molecular assays.137

Serologic diagnosis: Serologic diagnosis is rarely used in
clinical practice and is primarily a research tool. Complement
fixation and EIA assays are available but require collection of
convalescent sera to show fourfold or more rise in antibody
titer and confirm acute infection. Cross-reactive immune
responses to HPIV1 and 3 antigens make serotype-specific
diagnosis of these infections by antibody response alone
difficult.153 Detection of HPIV-specific IgM has been de-
scribed in children with HPIV infection, but commercial
assays are not readily available.154

Treatment

Currently, there are no antiviral agents with proven efficacy
for parainfluenza virus infection. Treatment of HPIV infection
is generally symptomatic in healthy children and adults.11

Croup: Croup, commonly caused by HPIV1 and HPIV2
infection, presents with symptoms of a barking cough and
stridor due to swelling and obstruction in the subglottic area
of the trachea.155 Corticosteroids are the primary treatment
for croup and have been shown to be beneficial for mild and
moderate to severe croup.156,157 A fivefold reduction in rates
of intubation has been noted in children with severe croup
treated with corticosteroids compared with those not
treated.157 Among less ill children, corticosteroid treatment
results in shorter emergency room visits, less frequent return
medical visits, and improved sleep.155 Corticosteroids may be
administered by mouth or given intramuscularly in the form
of dexamethasone or prednisolone and both have been
shown to be superior to inhaled therapy with budesonide.
Conventional dosing is a single dose of dexamethasone at 60
mg/kg, although lower doses have been proposed. The use of
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nebulized epinephrine is associated with short-term relief of
symptoms at 30 minutes, but treatment effects generally
disappear after 2 hours.158 This treatment may offer symp-
tom relief while waiting for the anti-inflammatory activity of
steroid therapy to take effect. Racemic and L-epinephrine are
felt to have equivalent efficacy.155 Despite a long history of
using mist tents for croup, humidified air is not an effective
treatment for croup. Heliox, which is a mixture of helium and
oxygen has been proposed as a treatment for croup but is
difficult to administer and does not offer significant benefits
over conventional treatments.155

Antiviral agents: Presently there are no licensed antiviral
agents for the treatment of HPIV infection. Data on the use of
antiviral agents is primarily derived from animal studies, case
reports, and small uncontrolled series in immunocompro-
mised children and adults. The majority of treatment regi-
mens utilize aerosolized or systemic ribavirin in combination
with intravenous immunoglobulin (IVIG) and/or corticoste-
roids.159 The nonrandomized nature of the these studies and
differing routes of administration as well as the different
underlying immune defects and type of HPIV infections
treated (upper vs. lower tract disease) prohibit definitive
conclusions for HPIV treatment. However, active research
for new effective antiviral agents for HPIV is ongoing and
several new agents show promise in vitro and in vivo.

Ribavirin: Ribavirin is a synthetic nucleoside analogue
which has broad-spectrum in vitro and in vivo activity against
many RNA and DNA viruses.160 Aerosolized ribavirin is
currently licensed for the treatment of severe RSV in young
children and oral and intravenous ribavirin has been used for
the treatment of other viral infections such as hepatitis C and
Lassa fever.161,162 Aerosolized ribavirin is generally well
tolerated, although increased cough and bronchospasm
may occur and systemic ribavirin can be associated with a
reversible hemolytic anemia.163,164 Unfortunately, most of
the information regarding the utility of ribavirin comes from
case reports or uncontrolled case series of patients with a
variety of immunosuppressive conditions.163,165–173 The bulk
of the data are derived frompersonswith hematopoietic stem
cell transplants (HSCT) which include solid-organ transplant
recipients and primary immunodeficiencies. In children with
SCIDS and HPIV infection, aerosolized ribavirin has been
administered over long periods of time (3–10 months) with-
out apparent toxicity.164 Consensus indicates that ribavirin is
not effective for HPIV pneumonia when given late in the
course of illness, especially if respiratory failure has
ensued.7,9,174 Wendt and colleagues reported HPIV infection
in 12 adults and 15 children undergoing HSCT with survival
rates of 78% in those who received ribavirin as well as those
whowere not treated.9However, treatment was started after
11 days of illness on average. Nichols et al reported the
treatment and outcomes of 253 HSCT patients with HPIV
infectionwhowere administered ribavirinwithin 48 hours of
diagnosis and found no effect on 30-day mortality and the
highest risk of death in patients with bacterial and fungal
copathogens.78,174 Finally, the largest series to date consisting
of 544 HSCT recipients with HPIV infection treated at the Fred
Hutchinson Cancer Center demonstrated that the use of

inhaled ribavirin was significantly associated with reduced
overall mortality but not mortality specifically from respira-
tory failure in multivariable analysis.159 Moreover, in the
subset with proven HPIV LRTI, there was no difference in
mortality with ribavirin use.

Although the efficacy of ribavirin for the treatment of LRTI
appears poor, early treatment to prevent progression to
pneumonia remains an unanswered question with failures
clearly documented.163,168,170 In addition, the role of ribavi-
rin to prevent long-term pulmonary sequelae has not been
adequately studied.7,80,172 In a small series of heart–lung
transplant patients with HPIV infection, the use of a multi-
drug approach including IVIG, steroids, and ribavirin was
associated with slower decline in lung function compared
with historical controls.175 In composite, the majority of
studies do not provide compelling evidence that ribavirin
provides significant benefit in the treatment of immunocom-
promised persons with HPIV infection and more effective
treatments are critically needed.

DAS181: A novel approach which appears promising is a
drug initially developed to treat influenza which acts on the
host cell receptor for HPIV to prevent binding rather than
exerting a direct effect on the virus.176 The HN protein
recognizes sialic acid containing glycolipids and glycopro-
teins on the host target cells and allows binding to occur.177

DAS181 is an inhaled recombinant sialidase fusion protein
that interfereswith the initial binding of HNwith the host cell
sialic acid containing receptor.13,178 Since sialic acid residues
serve as the cellular receptors for both influenza and HPIV,
DSA181 has been explored for HPIV antiviral activity.179 This
agent has been used under a compassionate use protocol to
treat HPIV pneumonia in a lung transplant and an HSCT
recipient with evidence of subjective and objective improve-
ment.178,180 Recently, DAS181 was used to treat two severely
ill HSCT patients requiring mechanical ventilation and was
successfully delivered via a nebulized formulation through
the ventilator with significant decrease in viral load.181 The
drug was well tolerated with only a mild increase in serum
alkaline phosphatase noted. Finally, four immunocompro-
mised children infected with HPIV demonstrated clinical
and radiographic improvement along with decreased viral
load after treatment with DAS181.182 The limited data avail-
able are encouraging and a phase 2 clinical trial in immuno-
compromised subjects with HPIV LRTI is ongoing (www.
clinicaltrials.gov).

Other antiviral agents: Several other small molecules with
in vitro activity against HPIV are in development.183–185 The
discovery of the 3D structure of the HPIV HN has allowed the
design of inhibitors that fit into the binding site of the
globular head to prevent binding and fusion of the virus.13

Additional antiviral agents in development are HN inhibitors,
BCX 2798 and BCX 2855, which bind to the catalytic binding
site of HPIVand have been shown effective in themouse HPIV
model.186,187

Immunoglobulins: Immunoglobulin preparations contain
neutralizing antibody to HPIV and may have anti-inflamma-
tory effects. The administration of serum immunoglobulin
(IVIG) has shown antiviral effects in the cotton rat model of
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HPIV3 infection.188 The combination of steroids with IVIG
produced the most favorable results by reducing both viral
titers and inflammation.189,190 Although animal data are
encouraging, data on the use of IVIG in immunosuppressed
patients are conflicting. Case reports claim dramatic results
with the use of IVIG, while larger observational studies find
no benefit.171,172,191,192 A recent report in which investiga-
tors noted no relationship between posttransplant levels of
serum HPIV3-specific antibody and outcomes in HPIV3-in-
fected HSCTrecipientswould suggest a limited role for IVIG in
the treatment of established HPIV infection.193

Prevention

Vaccines: Currently, there is no licensed vaccine for the
prevention of parainfluenza infection. Antibody to the two
surface glycoproteins, F and HN are neutralizing and serum
and nasal antibody to either protein protects against HPIV
infection and ameliorates disease.11,29,194 Thus, vaccines to
boost serum and or mucosal antibody may offer benefit, yet
several challenges to successful vaccine development remain.
Cross protection between different HPIV serotypes isminimal
or short lived, necessitating multiple or multivalent HPIV
vaccines. Currently,most vaccine efforts are focused onHPIV3
which is the primary cause of severe disease and pneumonia
in infants and in older adults. In young children, maternal
antibody and the immature immune system are impediments
to active immunization.194 However, HPIV1- and HPIV2-
associated croup infections occur at an older age and there-
fore the timing of vaccination could be delayed. Because of the
disastrous results of the formalin-inactivated RSV vaccine
trials performed in the 1960s during which enhanced disease
with natural infection was observed, most HPIV vaccine
research has avoided subunit vaccines.195 Several approaches
have included cold passaged attenuated live HPIV vaccines,
bovine HPIV, and recombinant bovine/human HPIV vac-
cines.194,196,197 As RSV and HPIV3 affect the same age group,
recombinant vaccines that express both RSV and HPIV pro-
teins are being explored.196–199 Several candidate vaccines
are now in phaseI/II clinical trials in children.

Infection control: Transmission of HPIV is thought to be via
large particle aerosols and fomites with self-inoculation.11,21

Young children can excretehighquantities of viruswhichmay
be viable on porous surfaces for up to 10 hours.200,201 Because
small particle aerosols are not felt to be important mecha-
nisms for transmission, droplet isolation is believed to be
sufficient to prevent nosocomial spread in most health care
settings.21However, prolonged sheddingof low levels of HPIV
has been documented in normal asymptomatic healthy
adults as well as immunocompromised persons. Interesting-
ly, two HPIV outbreaks occurred in healthy young adults 10
and 29weeks after complete social isolation at the South Pole
and were likely due to persistent low level shedding in some
individuals.202 Outbreaks of HPIV after HSCT have been
reported in inpatient and outpatient settings and, despite
aggressive infection control measures, have been difficult to
control.203,204 In several instances, outbreaks appeared to be
centered in the outpatient facilities where waiting rooms

were sometimes crowded and common infusion areas were
utilized.205 BecauseHPIVmaycause prolonged asymptomatic
infection, symptom-based infection control strategies which
have been successful in curtailing RSV and influenza out-
breaks may be less effective to prevent nosocomial spread of
HPIV.206WhenHPIVoutbreaks are detected in settingswhere
immunocompromised patients are cared for, enhanced infec-
tion control measures are recommended including strict
visitor and patient-to-patient contact limitation, cohorting,
masking of personnel and visitors in contact with HPIV-
infected patients, and frequent cleaning of environmental
surfaces.205 Screening of asymptomatic patients and staff
may be indicated in difficult-to-control outbreaks.206

Conclusion

HPIVs cause a significant burden of disease in children and
adults. A wide spectrum of illness including colds, croup,
bronchiolitis, and pneumonia are attributed to these ubiqui-
tous pathogens. The most severe disease is found among
immunocompromised patients and treatment at present
remains largely supportive. Several promising antiviral drugs
are in development and are in early-stage clinical trials.
Continued research for new vaccines and therapeutics is
needed.
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