Semin Neurol 2016; 36(02): 177-184
DOI: 10.1055/s-0036-1582226
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Optical Coherence Tomography in Multiple Sclerosis

James V. M. Hanson
1   Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
2   Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
,
Sebastian C. Lukas
1   Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
,
Misha Pless
3   Department of Ophthalmology, Hospital of the Canton of Lucerne, Lucerne, Switzerland
,
Sven Schippling
1   Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
26 April 2016 (online)

Abstract

Retinal optical coherence tomography (OCT) has recently become a vital tool for clinicians and researchers in ophthalmology and, increasingly, in neurology. Optical coherence tomography is quickly and easily performed, well-tolerated by patients, and allows high-resolution viewing of unmyelinated axons and other retinal structures in vivo. These factors have led OCT to find favor as a method of quantifying neuroaxonal loss in multiple sclerosis (MS), and the increasing acceptance of the anterior visual pathway as a model to investigate MS in humans.

In this short review, the authors discuss OCT findings in MS research, and the relationships of these structural findings with established functional outcome measures such as visual acuity and electrophysiological examinations. The utility of OCT in patients with acute optic neuritis is emphasized. Optical coherence tomography is a particularly powerful tool when the individual retinal layers are visualized and quantified following the segmentation of scans; this technique shows promise as a method for defining novel MS phenotypes.

 
  • References

  • 1 Huang D, Swanson EA, Lin CP , et al. Optical coherence tomography. Science 1991; 254 (5035) 1178-1181
  • 2 Potsaid B, Gorczynska I, Srinivasan VJ , et al. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express 2008; 16 (19) 15149-15169
  • 3 Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683-747
  • 4 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372 (9648) 1502-1517
  • 5 Ebers GC. Optic neuritis and multiple sclerosis. Arch Neurol 1985; 42 (7) 702-704
  • 6 Frohman E, Costello F, Zivadinov R , et al. Optical coherence tomography in multiple sclerosis. Lancet Neurol 2006; 5 (10) 853-863
  • 7 Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976; 26 (6 PT 2): 26-28
  • 8 Frohman EM, Costello F, Stüve O , et al. Modeling axonal degeneration within the anterior visual system: implications for demonstrating neuroprotection in multiple sclerosis. Arch Neurol 2008; 65 (1) 26-35
  • 9 Petzold A, de Boer JF, Schippling S , et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9 (9) 921-932
  • 10 Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol 2010; 23 (1) 16-23
  • 11 Naismith RT, Tutlam NT, Xu J , et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 2009; 72 (12) 1077-1082
  • 12 Schneider E, Zimmermann H, Oberwahrenbrock T , et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 2013; 8 (6) e66151
  • 13 Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV , et al. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 2011; 54 (Suppl. 01) S204-S217
  • 14 Albrecht P, Müller AK, Südmeyer M , et al. Optical coherence tomography in parkinsonian syndromes. PLoS ONE 2012; 7 (4) e34891
  • 15 Seigo MA, Sotirchos ES, Newsome S , et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol 2012; 259 (10) 2119-2130
  • 16 Saidha S, Syc SB, Ibrahim MA , et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134 (Pt 2): 518-533
  • 17 Hickman SJ, Dalton CM, Miller DH, Plant GT. Management of acute optic neuritis. Lancet 2002; 360 (9349) 1953-1962
  • 18 Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133 (Pt 6): 1591-1601
  • 19 Syc SB, Saidha S, Newsome SD , et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 2012; 135 (Pt 2): 521-533
  • 20 Costello FE, Klistorner A, Kardon R. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis. Ophthalmic Surg Lasers Imaging 2011; 42 (4, Suppl) S28-S40
  • 21 Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol 2005; 4 (5) 281-288
  • 22 Söderström M, Ya-Ping J, Hillert J, Link H. Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings. Neurology 1998; 50 (3) 708-714
  • 23 Shams PN, Plant GT. Optic neuritis: a review. Int MS J 2009; 16 (3) 82-89
  • 24 Fisher JB, Jacobs DA, Markowitz CE , et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006; 113 (2) 324-332
  • 25 Raz N, Dotan S, Chokron S, Ben-Hur T, Levin N. Demyelination affects temporal aspects of perception: an optic neuritis study. Ann Neurol 2012; 71 (4) 531-538
  • 26 Wu H, de Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 2011; 20 (8) 470-476
  • 27 Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK , et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2009; 50 (7) 3432-3437
  • 28 Parisi V, Manni G, Spadaro M , et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999; 40 (11) 2520-2527
  • 29 Schuman JS, Hee MR, Puliafito CA , et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113 (5) 586-596
  • 30 Trip SA, Schlottmann PG, Jones SJ , et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005; 58 (3) 383-391
  • 31 Frisén L, Hoyt WF. Insidious atrophy of retinal nerve fibers in multiple sclerosis. Funduscopic identification in patients with and without visual complaints. Arch Ophthalmol 1974; 92 (2) 91-97
  • 32 Oberwahrenbrock T, Schippling S, Ringelstein M , et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012; 2012: 530305
  • 33 Costello F, Hodge W, Pan YI, Eggenberger E, Coupland S, Kardon RH. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 2008; 14 (7) 893-905
  • 34 Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E , et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol 2015; 77 (3) 517-528
  • 35 Balcer LJ, Baier ML, Pelak VS , et al. New low-contrast vision charts: reliability and test characteristics in patients with multiple sclerosis. Mult Scler 2000; 6 (3) 163-171
  • 36 Balcer LJ, Frohman EM. Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity. Neurology 2010; 74 (Suppl. 03) S16-S23
  • 37 Garcia-Martin E, Rodriguez-Mena D, Herrero R , et al. Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS. Neurology 2013; 81 (1) 76-83
  • 38 Saidha S, Syc SB, Durbin MK , et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler 2011; 17 (12) 1449-1463
  • 39 Walter SD, Ishikawa H, Galetta KM , et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 2012; 119 (6) 1250-1257
  • 40 Talman LS, Bisker ER, Sackel DJ , et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67 (6) 749-760
  • 41 Schinzel J, Zimmermann H, Paul F , et al. Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. BMC Neurol 2014; 14: 31
  • 42 Sriram P, Wang C, Yiannikas C , et al. Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. PLoS ONE 2014; 9 (8) e102546
  • 43 Villoslada P, Cuneo A, Gelfand J, Hauser SL, Green A. Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult Scler 2012; 18 (7) 991-999
  • 44 Moura AL, Teixeira RA, Oiwa NN , et al. Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge colour test. Vis Neurosci 2008; 25 (3) 463-468
  • 45 Shaygannejad V, Golabchi K, Dehghani A , et al. Color blindness among multiple sclerosis patients in Isfahan. J Res Med Sci 2012; 17 (3) 254-257
  • 46 Harrison AC, Becker WJ, Stell WK. Colour vision abnormalities in multiple sclerosis. Can J Neurol Sci 1987; 14 (3) 279-285
  • 47 Martínez-Lapiscina EH, Ortiz-Pérez S, Fraga-Pumar E , et al. Colour vision impairment is associated with disease severity in multiple sclerosis. Mult Scler 2014; 20 (9) 1207-1216
  • 48 Henson DB. Visual Fields. Oxford, UK: Oxford University Press; 1993
  • 49 Castro SM, Damasceno A, Damasceno BP , et al. Visual pathway abnormalities were found in most multiple sclerosis patients despite history of previous optic neuritis. Arq Neuropsiquiatr 2013; 71 (7) 437-441
  • 50 Hokazono K, Raza AS, Oyamada MK, Hood DC, Monteiro ML. Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry. Doc Ophthalmol 2013; 127 (3) 201-215
  • 51 Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 2007; 48 (12) 5798-5805
  • 52 Merle H, Olindo S, Donnio A, Richer R, Smadja D, Cabre P. Anatomic and functional correlation of frequency-doubling technology perimetry (FDTP) in multiple sclerosis. Int Ophthalmol 2011; 31 (4) 263-270
  • 53 Scolding N, Wilkins A. Multiple Sclerosis. Oxford, UK: Oxford University Press; 2012
  • 54 Di Maggio G, Santangelo R, Guerrieri S , et al. Optical coherence tomography and visual evoked potentials: which is more sensitive in multiple sclerosis?. Mult Scler 2014; 20 (10) 1342-1347
  • 55 Tugcu B, Soysal A, Kılıc M , et al. Assessment of structural and functıonal vısual outcomes ın relapsıng remıttıng multıple sclerosıs wıth vısual evoked potentıals and optıcal coherence tomography. J Neurol Sci 2013; 335 (1–2) 182-185
  • 56 Abalo-Lojo JM, Limeres CC, Gómez MA , et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol 2014; 34 (1) 23-28
  • 57 Tátrai E, Simó M, Iljicsov A, Németh J, Debuc DC, Somfai GM. In vivo evaluation of retinal neurodegeneration in patients with multiple sclerosis. PLoS ONE 2012; 7 (1) e30922
  • 58 Soufi G, AitBenhaddou E, Hajji Z , et al. Evaluation of retinal nerve fiber layer thickness measured by optical coherence tomography in Moroccan patients with multiple sclerosis. J Fr Ophtalmol 2015; 38 (6) 497-503
  • 59 Spain RI, Maltenfort M, Sergott RC, Leist TP. Thickness of retinal nerve fiber layer correlates with disease duration in parallel with corticospinal tract dysfunction in untreated multiple sclerosis. J Rehabil Res Dev 2009; 46 (5) 633-642
  • 60 Jeanjean L, Castelnovo G, Carlander B , et al. [Retinal atrophy using optical coherence tomography (OCT) in 15 patients with multiple sclerosis and comparison with healthy subjects]. Rev Neurol (Paris) 2008; 164 (11) 927-934
  • 61 Naismith RT, Tutlam NT, Xu J , et al. Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 2009; 73 (1) 46-52
  • 62 Ontaneda D, LaRocca N, Coetzee T, Rudick R ; NMSS MSFC Task Force. Revisiting the multiple sclerosis functional composite: proceedings from the National Multiple Sclerosis Society (NMSS) Task Force on Clinical Disability Measures. Mult Scler 2012; 18 (8) 1074-1080
  • 63 Balantrapu S, Sandroff BM, Pula JH, Motl RW. Integrity of the anterior visual pathway and its association with ambulatory performance in multiple sclerosis. Mult Scler Int 2013; 2013: 481035
  • 64 McCulloch DL, Marmor MF, Brigell MG , et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 2015; 130 (1) 1-12
  • 65 Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 2002; 43 (5) 1673-1685
  • 66 Bearse Jr MA, Sutter EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis 1996; 13 (3) 634-640
  • 67 Luo X, Frishman LJ. Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci 2011; 52 (12) 8571-8584
  • 68 Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith III EL. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 1999; 40 (6) 1124-1136
  • 69 Klistorner AI, Graham SL, Grigg JR, Billson FA. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 1998; 39 (6) 937-950
  • 70 Almarcegui C, Dolz I, Pueyo V , et al. Correlation between functional and structural assessments of the optic nerve and retina in multiple sclerosis patients. Neurophysiol Clin 2010; 40 (3) 129-135
  • 71 Rodriguez-Mena D, Almarcegui C, Dolz I , et al. Electrophysiologic evaluation of the visual pathway in patients with multiple sclerosis. J Clin Neurophysiol 2013; 30 (4) 376-381
  • 72 Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ. The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci 2012; 53 (3) 1315-1323
  • 73 Gundogan FC, Demirkaya S, Sobaci G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis?—A structural and functional evaluation. Invest Ophthalmol Vis Sci 2007; 48 (12) 5773-5781
  • 74 Schnurman ZS, Frohman TC, Beh SC , et al. Retinal architecture and mfERG: optic nerve head component response characteristics in MS. Neurology 2014; 82 (21) 1888-1896
  • 75 Kappos L, Cohen J, Collins W , et al. Fingolimod in relapsing multiple sclerosis: An integrated analysis of safety findings. Mult Scler Relat Disord 2014; 3 (4) 494-504
  • 76 Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135 (Pt 6) 1786-1793
  • 77 Saidha S, Sotirchos ES, Ibrahim MA , et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11 (11) 963-972
  • 78 Sigler EJ. Microcysts in the inner nuclear layer, a nonspecific SD-OCT sign of cystoid macular edema. Invest Ophthalmol Vis Sci 2014; 55 (5) 3282-3284
  • 79 Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 2014; 121 (1) 142-149
  • 80 Mahroo OA, Shalchi Z, Kisimbi J, Sanyiwa AJ, Mohamed MD, Plant GT. Re: Abegg et al.: Microcystic macular edema: retrograde maculopathy caused by optic neuropathy (Ophthalmology 2014;121:142-9). Ophthalmology 2014; 121 (8) e40
  • 81 Kaufhold F, Zimmermann H, Schneider E , et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS ONE 2013; 8 (8) e71145
  • 82 Gelfand JM, Cree BA, Nolan R, Arnow S, Green AJ. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 2013; 70 (5) 629-633
  • 83 Brandt AU, Oberwahrenbrock T, Kadas EM, Lagrèze WA, Paul F. Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology 2014; 83 (1) 73-77
  • 84 Balk LJ, Killestein J, Polman CH, Uitdehaag BM, Petzold A. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 2012; 135 (Pt 12): e226 , author reply e227
  • 85 Wolff B, Basdekidou C, Vasseur V, Mauget-Faÿsse M, Sahel JA, Vignal C. Retinal inner nuclear layer microcystic changes in optic nerve atrophy: a novel spectral-domain OCT finding. Retina 2013; 33 (10) 2133-2138
  • 86 Hasegawa T, Akagi T, Yoshikawa M , et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS ONE 2015; 10 (6) e0130175
  • 87 Barboni P, Carelli V, Savini G, Carbonelli M, La Morgia C, Sadun AA. Microcystic macular degeneration from optic neuropathy: not inflammatory, not trans-synaptic degeneration. Brain 2013; 136 (Pt 7): e239
  • 88 Lujan BJ, Horton JC. Microcysts in the inner nuclear layer from optic atrophy are caused by retrograde trans-synaptic degeneration combined with vitreous traction on the retinal surface. Brain 2013; 136 (Pt 11): e260
  • 89 Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain 2012; 135 (Pt 12): e225
  • 90 Kisimbi J, Shalchi Z, Mahroo OA , et al. Macular spectral domain optical coherence tomography findings in Tanzanian endemic optic neuropathy. Brain 2013; 136 (Pt 11): 3418-3426
  • 91 Sigler EJ, Randolph JC, Charles S. Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane. Graefes Arch Clin Exp Ophthalmol 2013; 251 (7) 1679-1685
  • 92 Polman CH, Reingold SC, Banwell B , et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69 (2) 292-302
  • 93 Brandt AU, Oberwahrenbrock T, Ringelstein M , et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134 (Pt 11): e193 , author reply e194
  • 94 Albrecht P, Ringelstein M, Müller AK , et al. Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult Scler 2012; 18 (10) 1422-1429
  • 95 Rebolleda G, González-López JJ, Muñoz-Negrete FJ, Oblanca N, Costa-Frossard L, Álvarez-Cermeño JC. Color-code agreement among stratus, cirrus, and spectralis optical coherence tomography in relapsing-remitting multiple sclerosis with and without prior optic neuritis. Am J Ophthalmol 2013; 155 (5) 890-897
  • 96 Gills Jr JP. Electroretinographic abnormalities and advanced multiple sclerosis. Invest Ophthalmol 1966; 5 (6) 555-559
  • 97 Papakostopoulos D, Fotiou F, Hart JC, Banerji NK. The electroretinogram in multiple sclerosis and demyelinating optic neuritis. Electroencephalogr Clin Neurophysiol 1989; 74 (1) 1-10
  • 98 Forooghian F, Sproule M, Westall C , et al. Electroretinographic abnormalities in multiple sclerosis: possible role for retinal autoantibodies. Doc Ophthalmol 2006; 113 (2) 123-132