Prenatal Diagnosis of Ectrodactyly in the First Trimester by Three-Dimensional Ultrasonography

Matthew J. Blitz, MD, MBA1 Burton Rochelson, MD1

1Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hofstra Northwell School of Medicine, North Shore University Hospital, Manhasset, New York

Keywords
► ectrodactyly
► split hand malformation
► prenatal diagnosis
► 3D ultrasonography

Abstract

Introduction Ectrodactyly, also known as split hand/foot malformation, is a rare developmental abnormality of the limbs that consists of absent central digits, a deep median cleft, and fusion of the remaining lateral digits, ultimately producing clawlike extremities. This case represents one of the earliest reported diagnoses of this anomaly to utilize three-dimensional (3D) ultrasonography.

Case A nulliparous woman presented at 13 weeks of gestation for first-trimester aneuploidy screening. On two-dimensional (2D) imaging, she was noted to have a fetus with a shortened right upper limb and a malformed right hand with no clearly visualized digits. The anomaly was then further evaluated with both transabdominal and transvaginal 2D and 3D ultrasonography with postprocessing visualization, revealing absent central digits. Neither the patient nor her husband reported any personal or family history of skeletal or other structural malformations.

Discussion Fetal limb abnormalities are being encountered at increasingly earlier gestational ages due to improvements in image quality and expanded use of ultrasound in the first trimester. Early identification of fetal limb malformations without a definitive diagnosis or a clear pattern of inheritance can present a challenging clinical scenario. Patients may opt for earlier termination of pregnancy rather than wait for additional information to guide decision-making.

Ectrodactyly, also known as split hand/foot malformation (SHFM), is a rare developmental abnormality of the limbs that consists of absent central digits, a deep median cleft, and fusion of the remaining lateral digits, ultimately producing clawlike extremities. It can occur as an isolated malformation or as part of various complex syndromes. The estimated incidence of isolated ectrodactyly, in which only the limbs are affected, is 1 in 18,000 births. Among this group, nearly 80% have only one affected limb with upper limb predominance. Here, we present a case of ectrodactyly diagnosed in the first trimester by two-dimensional (2D) and three-dimensional (3D) ultrasonography. Based on our review of the literature, this case represents one of the earliest reported diagnoses of this anomaly to utilize 3D ultrasonography.

Case Report

A nulliparous woman presented at 132/7 weeks of gestational age for first-trimester screening for aneuploidy. On 2D imaging, she was noted to have a fetus with a shortened right upper limb and a malformed right hand with no clearly visualized digits. Nuchal translucency was within normal limits, measuring 1.8 mm. The anomaly was then further evaluated with both transabdominal and transvaginal 2D and
3D ultrasonography with postprocessing visualization, revealing absent central digits (►Figs. 1 and 2). The differential diagnosis was discussed with the patient, including the possibility of isolated or syndromic ectrodactyly, radial ray aplasia syndromes, Cornelia de Lange syndrome, and amniotic band syndrome. A follow-up ultrasound examination was planned for 2 weeks later. On subsequent imaging at 152/7 weeks, the humerus was short, the forearm was essentially not present, and there was again a clawlike deformity of the right hand (►Figs. 3 and 4). A single umbilical artery was also noted. The visualized anatomy was otherwise normal but limited views of the face and kidneys were obtained, which was attributed to gestational age and maternal body habitus. Fetal biometry was consistent with last menstrual period and early ultrasound. Past medical, obstetrical, and surgical histories were unremarkable. Neither the patient nor her husband reported any personal or family history of skeletal or other structural malformations.

After extensive counseling, the couple opted for termination of pregnancy, regardless of karyotype and other laboratory testing. For the benefit of future preconception counseling, amniocentesis was performed and amniotic fluid sent for testing. Alpha-fetoprotein (AFP), fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and karyotype (46,XX) were normal. A dilation and evacuation procedure was performed. Surgical pathology confirmed the clawlike deformity of the right hand and relatively short foot length for gestational age. The face was too disrupted to identify cleft lip or palate (►Fig. 5). Although the viscera were disrupted, the histology was unremarkable.

Discussion

The term ectrodactyly comes from the Greek words εκτρομα (abortion) and δακτυλος (finger). Other outdated and pejorative terminology is sometimes found in the literature. The condition results from aberrant development of the hand and/or foot plates during the seventh week of gestation. In normal development, five digital rays arise from the hand and foot plates, and the apical ectodermal ridge (AER) leads the growth and differentiation of each ray. The central rays, which...
form the second, third, and fourth digits, differentiate at a
different time from the preaxial (medial) and postaxial
(lateral) rays. In cases of ectrodactyly, a central ray defect
occurs such that the AER ceases to function normally.8,9

Ectrodactyly may occur as an isolated, sporadic malformation
or represent a single component in one of many genetic
syndromes. These syndromes represent a genetically heteroge-
nous spectrum of disorders with wide variability in clinical
expression. Five loci for ectrodactyly have been mapped to
chromosomes 7q21 (SHFM1), Xq26 (SHFM2), 10q25 (SHFM3),
3q27 (SHFM4), and 2q31 (SHFM5).9 The most common mode of
inheritance is autosomal dominant with reduced penetrance.
Among the various syndromes, the ectrodactyly ectodermal
dysplasia cleft palate syndrome is the best described, often
occurring in conjunction with genitourinary abnormalities,
hearing loss, and dysmorphic facies.

In the above case, it remains uncertain whether this was
isolated ectrodactyly or a syndromic condition. Given the
early identification of this limb anomaly and a termination
procedure that did not provide an intact fetus, the presence or
absence of certain sonographic and clinical features support-
ing either diagnosis could not be fully assessed. The patient
was counseled that labor induction may be advantageous for
these patients. If termination of pregnancy is elected, procedures performed
earlier in gestation have a lower risk of complications.

References
malformations often accompany a spectrum of anomalies. J Ultrasound Med
2014;33(1):167–176
2. Creizel AE, Vitéz M, Kodaj I, Lenz W. An epidemiological study of
30(7):593–596
hand and foot malformation: ultrasound detection in the first
4. Koo BS, Baek SJ, Kim MR, Joo WD, Yoo HJ. Prenatally diagnosed
ectrodactyly at 16 weeks' gestation by 2- and 3-dimensional ultrasono-
5. Ram KT, Goffman D, Ilagan J, Dar P. First-trimester diagnosis of
familial split-hand/split-foot malformation. J Ultrasound Med
2009;28(10):1397–1400
Prenatal diagnosis of bilateral ectrodactyly and radial agenesis
associated with trisomy 10 mosaicism. Case Rep Genet 2013;
2013:592702
7. Elliott AM, Evans JA. Derogatory nomenclature is still being used: the
J Med Genet 1994;31(9):726–730
9. Duijf PH, van Bokhoven H, Brunner HG. Pathogenesis of split-hand/split-foot
10. Rice KJ, Ballas J, Lai E, Hartney C, Jones MC, Pretorius DH. Diagnosis of
fetal limb abnormalities before 15 weeks: cause for concern.
J Ultrasound Med 2011;30(7):1009–1019
11. Budorick NE, Pretorius DH, Johnson DD, Tartar MK, Lou KV, Nelson
TR. Three-dimensional ultrasonic examination of the fetal hands:
227–234
12. Hull AD, James G, Salerno CC, Nelson T, Pretorius DH. Three-
dimensional ultrasonography and assessment of the first-trimes-