J Knee Surg 2016; 29(08): 684-689
DOI: 10.1055/s-0036-1571803
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Influence of Posterior Cruciate Ligament Tension on Knee Kinematics and Kinetics

Muhammad Shoifi Abubakar
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Shinichiro Nakamura
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Shinichi Kuriyama
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Hiromu Ito
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Masahiro Ishikawa
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Moritoshi Furu
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Yoshihisa Tanaka
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
,
Shuichi Matsuda
1   Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
› Author Affiliations
Further Information

Publication History

31 August 2015

27 December 2015

Publication Date:
23 February 2016 (online)

Abstract

The posterior cruciate ligament (PCL) has an important role in cruciate-retaining total knee arthroplasty to achieve good clinical results. The purpose of the study was to examine the influence of PCL tension on knee kinematics and kinetics and to propose an indicator for proper PCL tension during surgery. A squatting activity was simulated in a weight-bearing deep knee bend using a musculoskeletal computer simulation knee model. The length of the PCL was changed to represent different PCL tension models. The amount of PCL tension significantly influenced knee kinematics and kinetics. In the normal PCL model, the facet center positions at 90 degrees of knee flexion were positioned at almost the same position as in full extension. A loose PCL-induced paradoxical anterior movement and greater patellofemoral forces, whereas a tight PCL was related to excessive rollback and increased tibiofemoral forces. This study suggested ideal knee kinematics with proper PCL tension, in which the medial contact position at full flexion was almost similar to the position at 90 degrees of knee flexion.

 
  • References

  • 1 Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The influence of femoral rollback on patellofemoral contact loads in total knee arthroplasty. J Arthroplasty 2001; 16 (7) 909-918
  • 2 Christen B, Heesterbeek P, Wymenga A, Wehrli U. Posterior cruciate ligament balancing in total knee replacement: the quantitative relationship between tightness of the flexion gap and tibial translation. J Bone Joint Surg Br 2007; 89 (8) 1046-1050
  • 3 Jacobs WC, Clement DJ, Wymenga AB. Retention versus removal of the posterior cruciate ligament in total knee replacement: a systematic literature review within the Cochrane framework. Acta Orthop 2005; 76 (6) 757-768
  • 4 Nakamura S, Ito H, Yoshitomi H, Kuriyama S, Komistek RD, Matsuda S. Analysis of the Flexion Gap on In Vivo Knee Kinematics Using Fluoroscopy. J Arthroplasty 2015; 30 (7) 1237-1242
  • 5 Nishio Y, Onodera T, Kasahara Y, Takahashi D, Iwasaki N, Majima T. Intraoperative medial pivot affects deep knee flexion angle and patient-reported outcomes after total knee arthroplasty. J Arthroplasty 2014; 29 (4) 702-706
  • 6 Dennis DA, Komistek RD, Colwell Jr CE , et al. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res 1998; (356) 47-57
  • 7 Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 2003; (416) 37-57
  • 8 el Nahass B, Madson MM, Walker PS. Motion of the knee after condylar resurfacing—an in vivo study. J Biomech 1991; 24 (12) 1107-1117
  • 9 Mizu-Uchi H, Colwell Jr CW, Flores-Hernandez C, Fregly BJ, Matsuda S, D'Lima DD. Patient-specific computer model of dynamic squatting after total knee arthroplasty. J Arthroplasty 2015; 30 (5) 870-874
  • 10 Okamoto S, Mizu-uchi H, Okazaki K, Hamai S, Nakahara H, Iwamoto Y. Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplasty 2015; 30 (8) 1439-1443
  • 11 Anderson CJ, Ziegler CG, Wijdicks CA, Engebretsen L, LaPrade RF. Arthroscopically pertinent anatomy of the anterolateral and posteromedial bundles of the posterior cruciate ligament. J Bone Joint Surg Am 2012; 94 (21) 1936-1945
  • 12 Edwards A, Bull AM, Amis AA. The attachments of the fiber bundles of the posterior cruciate ligament: an anatomic study. Arthroscopy 2007; 23 (3) 284-290
  • 13 Harner CD, Xerogeanes JW, Livesay GA , et al. The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med 1995; 23 (6) 736-745
  • 14 LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am 2007; 89 (9) 2000-2010
  • 15 LaPrade CM, Civitarese DM, Rasmussen MT, LaPrade RF. Emerging updates on the posterior cruciate ligament: a review of the current literature. Am J Sports Med 2015; 43 (12) 3077-3092
  • 16 LaPrade RF, Ly TV, Wentorf FA, Engebretsen L. The posterolateral attachments of the knee: a qualitative and quantitative morphologic analysis of the fibular collateral ligament, popliteus tendon, popliteofibular ligament, and lateral gastrocnemius tendon. Am J Sports Med 2003; 31 (6) 854-860
  • 17 Kennedy NI, LaPrade RF, Goldsmith MT , et al. Posterior cruciate ligament graft fixation angles, part 1: biomechanical evaluation for anatomic single-bundle reconstruction. Am J Sports Med 2014; 42 (10) 2338-2345
  • 18 Kennedy NI, LaPrade RF, Goldsmith MT , et al. Posterior cruciate ligament graft fixation angles, part 2: biomechanical evaluation for anatomic double-bundle reconstruction. Am J Sports Med 2014; 42 (10) 2346-2355
  • 19 Kennedy NI, Wijdicks CA, Goldsmith MT , et al. Kinematic analysis of the posterior cruciate ligament, part 1: the individual and collective function of the anterolateral and posteromedial bundles. Am J Sports Med 2013; 41 (12) 2828-2838
  • 20 Sugita T, Amis AA. Anatomic and biomechanical study of the lateral collateral and popliteofibular ligaments. Am J Sports Med 2001; 29 (4) 466-472
  • 21 Wijdicks CA, Ewart DT, Nuckley DJ, Johansen S, Engebretsen L, Laprade RF. Structural properties of the primary medial knee ligaments. Am J Sports Med 2010; 38 (8) 1638-1646
  • 22 Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C. An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 2004; (420) 213-219
  • 23 Pandy MG, Shelburne KB. Dependence of cruciate-ligament loading on muscle forces and external load. J Biomech 1997; 30 (10) 1015-1024
  • 24 Morra EA, Rosca M, Greenwald JF, Greenwald AS. The influence of contemporary knee design on high flexion: a kinematic comparison with the normal knee. J Bone Joint Surg Am 2008; 90 (Suppl. 04) 195-201
  • 25 Dennis DA, Komistek RD, Hoff WA, Gabriel SM. In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 1996; (331) 107-117
  • 26 Lotke PA, Corces A, Williams J, Hirsch H. Strain characteristics of the posterior cruciate ligament after total knee arthroplasty. Am J Knee Surg 1993; 6 (3) 104-107
  • 27 Nakamura S, Sharma A, Ito H, Nakamura K, Zingde SM, Komistek RD. Kinematic difference between various geometric centers and contact points for tri-condylar bi-surface knee system. J Arthroplasty 2015; 30 (4) 701-705
  • 28 Fukagawa S, Matsuda S, Tashiro Y, Hashizume M, Iwamoto Y. Posterior displacement of the tibia increases in deep flexion of the knee. Clin Orthop Relat Res 2010; 468 (4) 1107-1114