Chiari IV Malformation, the Lückenschädel and Sagittal Craniosynostosis Association: Case Report and Literature Review

Associação entre malformação de Chiari IV, Lückenschädel e craniossinostose sagital: relato de caso e revisão de literatura

Pedro Radalle Biasi1 Laura Regyna Toffoli Roso2 Grégori Manfroi2 Rafael Augusto Espanhol1 Timóteo Abrantes de Lacerda Almeida1 Matheus Pintos Brunet1 Wellington César de Souza1 Eduardo Felipe Martinelli Baldissera1 Bruna Constantino Rech3 Naiana Posenato4 Marcelo Ughini Crusius5

1Neurosurgery Residence, Hospital São Vicente de Paulo, Passo Fundo, RS, Brazil
2Medical Student, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
3Neurology Resident, Hospital São Vicente de Paulo, Passo Fundo, RS, Brazil
4Neurologist, Instituto de Neurologia e Neurocirurgia de Passo Fundo, Passo Fundo, RS, Brazil
5Neurosurgeon, Instituto de Neurologia e Neurocirurgia de Passo Fundo, Passo Fundo, RS, Brazil

Address for correspondence Pedro Radalle Biasi, MR, Av. Sete de Setembro, 65, ap 101, Centro, Passo Fundo, RS, Brazil 99010-121 (e-mail: pedrobiiasi@doctor.com).

Abstract

The association between Lückenschädel and craniosynostosis is unusual and unknown. Genetic origin is a possibility, representing one of many possible phenotypes for mutation. To the best of our knowledge, the association of such anomalies in a type IV Chiari malformation has never been reported before. The authors present the case of a patient with obstructive hydrocephalus, diagnosed with Chiari IV malformation associated with Lückenschädel and sagittal craniosynostosis. The Lückenschädel is the bone abnormality least commonly associated with Chiari malformation. It consists of a defect in the bones of membranous origin that form the cranial vault. This anomaly arises from periosteal dysplasia, and is characterized by rounded and irregular gaps in the skull, bound by bony ridges. Craniosynostosis is due to premature fusion of the cranial sutures and is sometimes associated with the Chiari complex of malformations. The diagnostic of Lückenschädel and craniosynostosis is done by imaging, through which the skull assumes the aspect of a hive, characteristic of Lückenschädel and it is possible to see the premature fusion of the sutures. The Lückenschädel usually does not require treatment because of spontaneous resolution; whereas, craniosynostosis

Keywords

- Chiari malformation
- Lückenschädel
- craniosynostosis
- hydrocephalus
- ventriculostomy

Introduction

Lückenschädel and craniosynostosis are an unusual and little-known association with possible genetic origin, representing one of many possible phenotypes for a mutation in the FGFR2 gene.1–4 The Chiari malformations are a complex group of anatomic anomalies that usually is associated either to the Lückenschädel or to craniosynostosis. To the best of our knowledge, the association between these three anomalies has not been reported before.1,2,4–8 In this study, the authors aim to describe this extremely rare association and to provide a review of the literature.

Case Report

The study involved a male infant, eight months old, evolving with increased head circumference and developmental delay. We performed a computed tomography (CT) scan and saw evidence of obstructive tetraventricular hydrocephalus and multiple bone defects in the cranial vault, as well as premature fusion of the sagittal suture, consistent with a diagnosis of Lückenschädel and sagittal craniosynostosis (►Figs. 1 and 2). Magnetic resonance imaging (MRI) of the skull showed a reduced size of the posterior fossa, low-setting tentorium and torcular Herophili, and herniation of the cerebellar tonsils through the foramen magnum of about 7mm (►Figs. 3 and 4). We performed a third endoscopic ventriculostomy with resolution of hydrocephalus for further programming of posterior fossa decompression and treatment of synostosis. The patient remains stable until the time of this report.

Discussion

The complex of Chiari malformations was first described in 1883 by Cleland, and graded in 1891 by the Austrian pathologist Hans Chiari. It denotes a heterogeneous group of anatomical anomalies involving the posterior cranial fossa,
the cerebellum, brain stem, and cranial-cervical junction, with or without changes in the lower cord. Classically, there are four accepted subtypes of malformations. Types 1 and 2 are the most prevalent, with an incidence ranging from 1 to 5 thousand births. Recently, authors have proposed subtypes 1.5 and zero, although this has not yet become widespread.

Subtype 4, presented by the authors, is uncommon, and rarely is associated with tonsillar herniation. It is characterized by a small posterior fossa, with cerebellar hypoplasia, hypoplasia of the tentorium, and low-setting torcular herophili.

The Lückenschädel is one bone abnormality that can be found in association with Arnold-Chiari (assimilation of Atlas, atlantoaxial dislocation, Klippel-Feil anomaly, platibasia, basilar invagination), being the most unusual and generally associated with subtype 2, the most serious of the complex. This condition reaches 82% incidence in some series; however, the frequency of association with other subtypes of Chiari malformations is not known.

Also called craniolacunia, lacunar skull, or fenestrated skull, the Lückenschädel consists of a defect in the bones of membranous origin that form the cranial vault. This anomaly is due to periosteal dysplasia, and is characterized by rounded and irregular gaps in the skull, bounded by bony ridges. Pathologically such failures are completely devoid of bony structure formed by only a membranous diaphragm of periosteum and dura mater. The same defect is not found in the skull base bones, which have cartilaginous origin.

The association between Lückenschädel and craniosynostosis is already known, but uncommon, occurring in 10% of cases of craniosynostosis. It is likely caused by mutations in the FGFR2 gene (fibroblast growth factor receptor 2) involved in the genesis of craniosynostosis, which have been found in cases of craniolacunia, raising suspicion that mutations in different exons would be responsible for different phenotypes. This would explain the association in the present case.

The Lückenschädel and craniosynostosis diagnoses are done through imaging studies, both X-ray and computed tomography, in which is possible to see the bone defects and fusion of the cranial sutures. When examining X-rays or CT with 3D

Fig. 2 3-D reconstruction CT scan depicts the multiple bone defects of Lückenschädel.

Fig. 3 Sagittal T1W MRI depicts the reduced size of the posterior fossa, low-setting torcular herophili, and herniation of the cerebellar tonsils through the foramen magnum.

Fig. 4 Sagittal T1W MRI depicts the reduced size of the posterior fossa and low-setting tentorium.
reconstruction, the skull assumes the aspect of a hive, which is a
typical characteristic of Lückenschädel.1,3,4

This anomaly usually does not require treatment because the
ossification tends to normalize between the fourth and
sixth month of life, and does not directly reflect in brain
development.1,3,4 Given its spontaneous and early resolution,
it is not seen in adults, which contributes to the low rate
diagnosis of this condition.1,3,4 The Chiari malformation
type IV also tends to be asymptomatic, except for the few
cases where there may be tonsillar herniation, determining
syringomyelia and/or hydrocephalus. In this case, neurosur-
chal surgery is required, as in the present case.5,7

Craniolacunia implies surgery for aesthetic and functional
purposes and should be performed as early as possible
after diagnosis.23,24

The association between Chiari 4 malformation, Lück-
enschädel and craniosynostosis is extremely unusual, being
so little known and diagnosed; however, newborn imaging
studies may increase the diagnostic rate of these diseases
and better guide the medical care of such cases.

References
1 Vigliani MB. Luckenschadel skull: a forgotten entity. Obstet
2 Tajima M, Yamada H, Kageyama N. Craniolacunia in newborn with
3 Rio CE, Pinckney LE, Kennedy LA. Craniolacunia without asso-
4 Vogt EC, Wyatt GM. Craniolacunia (Lückenschädel) – a report of 54
cases. Anal of thw Twenty-fifth Annual Meeting of the Radiological
Society of North America; 1939 december 11–15; Atlanta, USA
5 Sarvat HB. Disorders of segmentation of the neural tube: Chiari
malformations. Handb Clin Neurol 2008;87:89–103
6 Carmel PW, Markesbery WR. Early descriptions of the Arnold-
Chiari malformation. The contribution of John Cleland. J Neuro-
surg 1972;37(5):543–547
7 Pearce JM. Arnold chiari, or “Cruveilhier cleland Chiari” malfor-
8 Schijman E. History, anatomic forms, and pathogenesis of Chiari I
9 Tubbs RS, Elton S, Grabb P, Dockery SE, Bartolucci AA, Oakes WJ.
Analysis of the posterior fossa in children with the Chiari 0
1054–1055
10 Tubbs RS, Iskandar BJ, Bartolucci AA, Oakes WJ. A critical analysis
of the Chiari 1.5 malformation. J Neurosurg 2004;101(2, Suppl)
179–183
11 Tajima M, Yamada H, Kageyama N, Nakamura S. [Craniolacunia in
newborns with myelomeningocele and encephalopathy (author’s transl)]. No Shinkei Geka 1978;6(10):975–979
12 Coley BD. Ultrasound diagnosis of luckenschadel (lacunar skull).
Pediatr Radiol 2000;30(2):82–84
13 Shigemori M, Honda E, Shojima K, Nagayama K, Takajyo N. [Two
cases of craniolacunia associated with meningoecele and menin-
goencephalocoele (author’s transl)-a1]. No Shinkei Geka 1976;
4(8):785–790
14 Stein S, Schut L, Borns P. Lacunar skull deformity (Lückenschädel)
10–13
15 Gardner WJ, Poolos PN. Craniolacunia: The result of embryonal
16 Chaudhari AM, Karas CS, Baig MN, Elton SW. Unique defect
representing features of Chiari type III and IV malformations.
17 Reardon W, Winter RM, Rutland P, Pulleyen LJ, Jones BM, Malcolm
S. Mutations in the fibroblast growth factor receptor 2 gene cause
18 Schell U, Hehr A, Feldman GJ, et al. Mutations in FGFR1 and FGFR2
cause familial and sporadic Pfeiffer syndrome. Hum Mol Genet
1995;4(3):323–328
19 Liu J, Kwon T-G, Nam HK, Hatch NE. Craniosynostosis-Associated
Fgfr2C342Y Mutant Bone Marrow Stromal Cells Exhibit Cell
Autonomous Abnormalities in Osteoblast Differentiation and
20 Kelleher FC, O’Sullivan H, Smyth E, McDermott R, Viterbo A.
Fibroblast growth factor receptor, developmental corruption
21 Steinberger D, Müller U, Jünger TH, Howaldt HP, Christophis P.
Mutation of FGFFR2 (cys278phe) in cranio lacunia and pansynos-
with craniosynostoses unrelated to Apert syndrome: the role of
fibroblast growth factor receptor gene mutations. J Neurosurg
2005;102(1, Suppl)23–30
23 Renier D, Lajeunie E, Arnaud E, Marchac D. Management of
24 Abe H, Ikota T, Akino M, Kitami K, Tsuru M. Functional prognosis
of surgical treatment of craniosynostosis. Childs Nerv Syst 1985;
1(1):53–61