Semin Liver Dis 2015; 35(04): 361-374
DOI: 10.1055/s-0035-1567832
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetics of Alcoholic Liver Disease

Quentin M. Anstee
1   Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, United Kingdom
,
Ann K. Daly
1   Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, United Kingdom
,
Christopher P. Day
1   Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
16 December 2015 (online)

Abstract

Excess alcohol consumption with consequent alcoholic liver disease (ALD) is a common cause of liver dysfunction and liver-related mortality worldwide. However, although the majority of heavy drinkers will develop steatosis, only a minority progress to advanced liver disease and cirrhosis. Thus, ALD is a complex disease where subtle interpatient genetic variations and environmental factors interact to determine disease progression. One genome-wide association study specifically addressing genetic modifiers of ALD has been published. However, most of our understanding is based on studies conducted on nonalcoholic fatty liver disease. Translation of candidates from these studies into ALD has established a role for variants in genes including PNPLA3 and potentially TM6SF2 across the disease spectrum from steatosis, through cirrhosis to hepatocellular carcinoma. Here the authors review the current status of the field with a particular focus on recent advances.

 
  • References

  • 1 Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. J Hepatol 2013; 59 (1) 160-168
  • 2 Teli MR, Day CP, Burt AD, Bennett MK, James OF. Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. Lancet 1995; 346 (8981) 987-990
  • 3 Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 2013; 10 (6) 330-344
  • 4 Lieber CS, Jones DP, Decarli LM. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J Clin Invest 1965; 44: 1009-1021
  • 5 Lieber CS, Decarli LM. Animal models of ethanol dependence and liver injury in rats and baboons. Fed Proc 1976; 35 (5) 1232-1236
  • 6 Brandon-Warner E, Schrum LW, Schmidt CM, McKillop IH. Rodent models of alcoholic liver disease: of mice and men. Alcohol 2012; 46 (8) 715-725
  • 7 Bellentani S, Saccoccio G, Costa G , et al; The Dionysos Study Group. Drinking habits as cofactors of risk for alcohol induced liver damage. Gut 1997; 41 (6) 845-850
  • 8 Becker U, Deis A, Sørensen TI , et al. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 1996; 23 (5) 1025-1029
  • 9 Fattovich G, Giustina G, Degos F , et al. Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. Gastroenterology 1997; 112 (2) 463-472
  • 10 Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis 2011; 31 (2) 128-146
  • 11 Askgaard G, Grønbæk M, Kjær MS, Tjønneland A, Tolstrup JS. Alcohol drinking pattern and risk of alcoholic liver cirrhosis: a prospective cohort study. J Hepatol 2015; 62 (5) 1061-1067
  • 12 Naveau S, Giraud V, Borotto E, Aubert A, Capron F, Chaput JC. Excess weight risk factor for alcoholic liver disease. Hepatology 1997; 25 (1) 108-111
  • 13 Becker U, Grønbaek M, Johansen D, Sørensen TI. Lower risk for alcohol-induced cirrhosis in wine drinkers. Hepatology 2002; 35 (4) 868-875
  • 14 Johansen D, Friis K, Skovenborg E, Grønbaek M. Food buying habits of people who buy wine or beer: cross sectional study. BMJ 2006; 332 (7540) 519-522
  • 15 Rotily M, Durbec JP, Berthézène P, Sarles H. Diet and alcohol in liver cirrhosis: a case-control study. Eur J Clin Nutr 1990; 44 (8) 595-603
  • 16 Iturriaga H, Bunout D, Hirsch S, Ugarte G. Overweight as a risk factor or a predictive sign of histological liver damage in alcoholics. Am J Clin Nutr 1988; 47 (2) 235-238
  • 17 Liu B, Balkwill A, Reeves G, Beral V ; Million Women Study Collaborators. Body mass index and risk of liver cirrhosis in middle aged UK women: prospective study. BMJ 2010; 340: c912
  • 18 Hart CL, Morrison DS, Batty GD, Mitchell RJ, Davey Smith G. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. BMJ 2010; 340: c1240
  • 19 Sanyal AJ ; American Gastroenterological Association. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002; 123 (5) 1705-1725
  • 20 Marchesini G, Brizi M, Morselli-Labate AM , et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107 (5) 450-455
  • 21 Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 1990; 11 (1) 74-80
  • 22 Raynard B, Balian A, Fallik D , et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology 2002; 35 (3) 635-638
  • 23 Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349 (9055) 825-832
  • 24 Poynard T, Ratziu V, Charlotte F, Goodman Z, McHutchison J, Albrecht J. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis c. J Hepatol 2001; 34 (5) 730-739
  • 25 [Anonymous] International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437 (7063) 1299-1320
  • 26 Frazer KA, Ballinger DG, Cox DR , et al; International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449 (7164) 851-861
  • 27 Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest 2008; 118 (5) 1590-1605
  • 28 Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med 2009; 360 (17) 1759-1768
  • 29 Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6 (2) 95-108
  • 30 Anstee Q, Day C. The genetics of non-alcoholic fatty liver disease: spotlight on PNPLA3 and TM6SF2. Semin Liver Dis 2015; 35 (3) 270-290
  • 31 Agrawal A, Bierut LJ. Identifying genetic variation for alcohol dependence. Alcohol Res 2012; 34 (3) 274-281
  • 32 Buch S, Stickel F, Trepo E , et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; ; in press
  • 33 Whitfield JB, Rahman K, Haber PS , et al; GenomALC Consortium. Brief report: genetics of alcoholic cirrhosis-GenomALC multinational study. Alcohol Clin Exp Res 2015; 39 (5) 836-842
  • 34 Nolan PM, Peters J, Strivens M , et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 2000; 25 (4) 440-443
  • 35 Waterston RH, Lindblad-Toh K, Birney E , et al; Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420 (6915) 520-562
  • 36 Gama Sosa MA, De Gasperi R, Elder GA. Animal transgenesis: an overview. Brain Struct Funct 2010; 214 (2–3) 91-109
  • 37 Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346 (6213) 1258096
  • 38 Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015; 16 (5) 299-311
  • 39 Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SD. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9: 49-69
  • 40 Anstee QM, Knapp S, Maguire EP , et al. Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition. Nat Commun 2013; 4: 2816
  • 41 Grant BF, Dawson DA, Stinson FS, Chou SP, Dufour MC, Pickering RP. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991-1992 and 2001-2002. Drug Alcohol Depend 2004; 74 (3) 223-234
  • 42 Bierut LJ, Dinwiddie SH, Begleiter H , et al. Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the Collaborative Study on the Genetics of Alcoholism. Arch Gen Psychiatry 1998; 55 (11) 982-988
  • 43 Midanik L. Familial alcoholism and problem drinking in a national drinking practices survey. Addict Behav 1983; 8 (2) 133-141
  • 44 Agrawal A, Lynskey MT. Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 2008; 103 (7) 1069-1081
  • 45 Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90 (1) 95-104
  • 46 Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet 2005; 6 (7) 521-532
  • 47 McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 2008; 17 (R2): R156-R165
  • 48 Barnard EA, Skolnick P, Olsen RW , et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 1998; 50 (2) 291-313
  • 49 Long JC, Knowler WC, Hanson RL , et al. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am J Med Genet 1998; 81 (3) 216-221
  • 50 Williams JT, Begleiter H, Porjesz B , et al. Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. II. Alcoholism and event-related potentials. Am J Hum Genet 1999; 65 (4) 1148-1160
  • 51 Reich T, Edenberg HJ, Goate A , et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet 1998; 81 (3) 207-215
  • 52 Porjesz B, Almasy L, Edenberg HJ , et al. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc Natl Acad Sci U S A 2002; 99 (6) 3729-3733
  • 53 Zinn-Justin A, Abel L. Genome search for alcohol dependence using the weighted pairwise correlation linkage method: interesting findings on chromosome 4. Genet Epidemiol 1999; 17 (Suppl. 01) S421-S426
  • 54 Ghosh S, Begleiter H, Porjesz B , et al. Linkage mapping of beta 2 EEG waves via non-parametric regression. Am J Med Genet B Neuropsychiatr Genet 2003; 118B (1) 66-71
  • 55 Edenberg HJ, Dick DM, Xuei X , et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 2004; 74 (4) 705-714
  • 56 Agrawal A, Edenberg HJ, Foroud T , et al. Association of GABRA2 with drug dependence in the collaborative study of the genetics of alcoholism sample. Behav Genet 2006; 36 (5) 640-650
  • 57 Covault J, Gelernter J, Hesselbrock V, Nellissery M, Kranzler HR. Allelic and haplotypic association of GABRA2 with alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2004; 129B (1) 104-109
  • 58 Lappalainen J, Krupitsky E, Remizov M , et al. Association between alcoholism and gamma-amino butyric acid alpha2 receptor subtype in a Russian population. Alcohol Clin Exp Res 2005; 29 (4) 493-498
  • 59 Fehr C, Sander T, Tadic A , et al. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr Genet 2006; 16 (1) 9-17
  • 60 Bauer LO, Covault J, Harel O , et al. Variation in GABRA2 predicts drinking behavior in project MATCH subjects. Alcohol Clin Exp Res 2007; 31 (11) 1780-1787
  • 61 Pierucci-Lagha A, Covault J, Feinn R , et al. GABRA2 alleles moderate the subjective effects of alcohol, which are attenuated by finasteride. Neuropsychopharmacology 2005; 30 (6) 1193-1203
  • 62 Parsian A, Zhang ZH. Human chromosomes 11p15 and 4p12 and alcohol dependence: possible association with the GABRB1 gene. Am J Med Genet 1999; 88 (5) 533-538
  • 63 Song J, Koller DL, Foroud T , et al. Association of GABA(A) receptors and alcohol dependence and the effects of genetic imprinting. Am J Med Genet B Neuropsychiatr Genet 2003; 117B (1) 39-45
  • 64 Enoch MA, Schwartz LS, White KV , et al. Linkage of GABRB1 to alcoholism and low voltage ALPHA EEG in two independent populations. Alcohol Clin Exp Res 2005; 29 (5) 132a
  • 65 Dick DM, Bierut LJ. The genetics of alcohol dependence. Curr Psychiatry Rep 2006; 8 (2) 151-157
  • 66 Whitfield JB, Nightingale BN, Bucholz KK, Madden PA, Heath AC, Martin NG. ADH genotypes and alcohol use and dependence in Europeans. Alcohol Clin Exp Res 1998; 22 (7) 1463-1469
  • 67 McCarver DG, Thomasson HR, Martier SS, Sokol RJ, Li T. Alcohol dehydrogenase-2*3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther 1997; 283 (3) 1095-1101
  • 68 Köhnke MD. Approach to the genetics of alcoholism: a review based on pathophysiology. Biochem Pharmacol 2008; 75 (1) 160-177
  • 69 Zintzaras E, Stefanidis I, Santos M, Vidal F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease?. Hepatology 2006; 43 (2) 352-361
  • 70 Harada S, Agarwal DP, Goedde HW, Tagaki S, Ishikawa B. Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet 1982; 2 (8302) 827
  • 71 Sato N, Lindros KO, Baraona E , et al. Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res 2001; 25 (5, Suppl ISBRA) 40S-45S
  • 72 Stinson FS, Grant BF, Dufour MC. The critical dimension of ethnicity in liver cirrhosis mortality statistics. Alcohol Clin Exp Res 2001; 25 (8) 1181-1187
  • 73 Reed T, Page WF, Viken RJ, Christian JC. Genetic predisposition to organ-specific endpoints of alcoholism. Alcohol Clin Exp Res 1996; 20 (9) 1528-1533
  • 74 Hrubec Z, Omenn GS. Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol Clin Exp Res 1981; 5 (2) 207-215
  • 75 Romeo S, Kozlitina J, Xing C , et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 76 Sookoian S, Castaño GO, Burgueño AL, Gianotti TF, Rosselli MS, Pirola CJ. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 2009; 50 (10) 2111-2116
  • 77 Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ ; NASH CRN. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010; 52 (3) 894-903
  • 78 Valenti L, Al-Serri A, Daly AK , et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51 (4) 1209-1217
  • 79 Singal AG, Manjunath H, Yopp AC , et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol 2014; 109 (3) 325-334
  • 80 Liu YL, Patman GL, Leathart JB , et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014; 61 (1) 75-81
  • 81 Anstee QM, Day CP. The genetics of NAFLD. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 645-655
  • 82 Salameh H, Raff E, Erwin A , et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 2015; 110 (6) 846-856
  • 83 Romeo S, Huang-Doran I, Baroni MG, Kotronen A. Unravelling the pathogenesis of fatty liver disease: patatin-like phospholipase domain-containing 3 protein. Curr Opin Lipidol 2010; 21 (3) 247-252
  • 84 Zimmermann R, Strauss JG, Haemmerle G , et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306 (5700) 1383-1386
  • 85 Rydel TJ, Williams JM, Krieger E , et al. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 2003; 42 (22) 6696-6708
  • 86 He S, McPhaul C, Li JZ , et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 2010; 285 (9) 6706-6715
  • 87 Speliotes EK, Yerges-Armstrong LM, Wu J , et al; NASH CRN; GIANT Consortium; MAGIC Investigators; GOLD Consortium. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 2011; 7 (3) e1001324
  • 88 Kozlitina J, Smagris E, Stender S , et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46 (4) 352-356
  • 89 Liu YL, Reeves HL, Burt AD , et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014; 5: 4309
  • 90 Dongiovanni P, Petta S, Maglio C , et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61 (2) 506-514
  • 91 Way M, Atkinson S, McQuillin A , et al. A functional variant in TM6SF2 associates with alcohol related cirrhosis risk in a British and Irish population. J Hepatol 2015; 62: S772
  • 92 Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 2007; 32 (5) 453-468
  • 93 Wu D, Cederbaum AI. Oxidative stress and alcoholic liver disease. Semin Liver Dis 2009; 29 (2) 141-154
  • 94 Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50 (6) 1258-1266
  • 95 Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths?. Hepatology 2006; 43 (2) (Suppl. 01) S31-S44
  • 96 Anstee QM, Concas D, Kudo H , et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 2010; 53 (3) 542-550
  • 97 Farrell GC, Larter CZ, Hou JY , et al. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J Gastroenterol Hepatol 2009; 24 (3) 443-452
  • 98 Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117 (3) 539-548
  • 99 Zeng T, Guo FF, Zhang CL, Song FY, Zhao XL, Xie KQ. Roles of cytochrome P4502E1 gene polymorphisms and the risks of alcoholic liver disease: a meta-analysis. PLoS ONE 2013; 8 (1) e54188
  • 100 Grove J, Daly AK, Burt AD , et al. Heterozygotes for HFE mutations have no increased risk of advanced alcoholic liver disease. Gut 1998; 43 (2) 262-266
  • 101 Gleeson D, Evans S, Bradley M , et al. HFE genotypes in decompensated alcoholic liver disease: phenotypic expression and comparison with heavy drinking and with normal controls. Am J Gastroenterol 2006; 101 (2) 304-310
  • 102 Macmillan-Crow LA, Cruthirds DL. Invited review: manganese superoxide dismutase in disease. Free Radic Res 2001; 34 (4) 325-336
  • 103 Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun 1996; 226 (2) 561-565
  • 104 Sutton A, Imbert A, Igoudjil A , et al. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics 2005; 15 (5) 311-319
  • 105 Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 2003; 13 (3) 145-157
  • 106 Namikawa C, Shu-Ping Z, Vyselaar JR , et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol 2004; 40 (5) 781-786
  • 107 Al-Serri A, Anstee QM, Valenti L , et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol 2011; 56 (2) 448-454
  • 108 Degoul F, Sutton A, Mansouri A , et al. Homozygosity for alanine in the mitochondrial targeting sequence of superoxide dismutase and risk for severe alcoholic liver disease. Gastroenterology 2001; 120 (6) 1468-1474
  • 109 Stewart SF, Leathart JB, Chen Y , et al. Valine-alanine manganese superoxide dismutase polymorphism is not associated with alcohol-induced oxidative stress or liver fibrosis. Hepatology 2002; 36 (6) 1355-1360
  • 110 Martins A, Cortez-Pinto H, Machado M , et al. Are genetic polymorphisms of tumour necrosis factor alpha, interleukin-10, CD14 endotoxin receptor or manganese superoxide dismutase associated with alcoholic liver disease?. Eur J Gastroenterol Hepatol 2005; 17 (10) 1099-1104
  • 111 Nahon P, Sutton A, Rufat P , et al. Myeloperoxidase and superoxide dismutase 2 polymorphisms comodulate the risk of hepatocellular carcinoma and death in alcoholic cirrhosis. Hepatology 2009; 50 (5) 1484-1493
  • 112 Buch S, Schafmayer C, Völzke H , et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet 2007; 39 (8) 995-999
  • 113 Ladero JM, Martínez C, García-Martin E , et al. Polymorphisms of the glutathione S-transferases mu-1 (GSTM1) and theta-1 (GSTT1) and the risk of advanced alcoholic liver disease. Scand J Gastroenterol 2005; 40 (3) 348-353
  • 114 Brind AM, Hurlstone A, Edrisinghe D , et al. The role of polymorphisms of glutathione S-transferases GSTM1, M3, P1, T1 and A1 in susceptibility to alcoholic liver disease. Alcohol Alcohol 2004; 39 (6) 478-483
  • 115 Hubatsch I, Ridderström M, Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 1998; 330 (Pt 1): 175-179
  • 116 Quigley EM, Monsour HP. The gut microbiota and non-alcoholic fatty liver disease. Semin Liver Dis 2015; 35 (3) 262-269
  • 117 Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD. A Polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999; 20 (5) 976-983
  • 118 Järveläinen HA, Orpana A, Perola M, Savolainen VT, Karhunen PJ, Lindros KO. Promoter polymorphism of the CD14 endotoxin receptor gene as a risk factor for alcoholic liver disease. Hepatology 2001; 33 (5) 1148-1153
  • 119 Campos J, Gonzalez-Quintela A, Quinteiro C , et al. The -159C/T polymorphism in the promoter region of the CD14 gene is associated with advanced liver disease and higher serum levels of acute-phase proteins in heavy drinkers. Alcohol Clin Exp Res 2005; 29 (7) 1206-1213
  • 120 Meiler C, Muhlbauer M, Johann M , et al. Different effects of a CD14 gene polymorphism on disease outcome in patients with alcoholic liver disease and chronic hepatitis C infection. World J Gastroenterol 2005; 11 (38) 6031-6037
  • 121 Leathart JB, Day CP, Daly AK. No association between functional SNPs in the endotoxin receptors CD14 and TLR4 and alcoholic liver disease (ALD): Is endotoxin important in the pathogenesis of aid in humans?. Hepatology 2001; 34: 459a
  • 122 Arbour NC, Lorenz E, Schutte BC , et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25 (2) 187-191
  • 123 Zeng T, Zhang CL, Han XY, Zhao S, Xie KQ. Association between CD14-159C>T polymorphisms and the risk for alcoholic liver disease: a meta-analysis. Eur J Gastroenterol Hepatol 2013; 25 (10) 1183-1189
  • 124 Grove J, Daly AK, Bassendine MF, Gilvarry E, Day CP. Interleukin 10 promoter region polymorphisms and susceptibility to advanced alcoholic liver disease. Gut 2000; 46 (4) 540-545
  • 125 Lazarus R, Klimecki WT, Palmer LJ , et al. Single-nucleotide polymorphisms in the interleukin-10 gene: differences in frequencies, linkage disequilibrium patterns, and haplotypes in three United States ethnic groups. Genomics 2002; 80 (2) 223-228
  • 126 Ladero JM, Fernández-Arquero M, Tudela JI , et al. Single nucleotide polymorphisms and microsatellite alleles of tumor necrosis factor alpha and interleukin-10 genes and the risk of advanced chronic alcoholic liver disease. Liver 2002; 22 (3) 245-251
  • 127 Roy N, Mukhopadhyay I, Das K , et al. Genetic variants of TNFα, IL10, IL1β, CTLA4 and TGFβ1 modulate the indices of alcohol-induced liver injury in East Indian population. Gene 2012; 509 (1) 178-188
  • 128 Takamatsu M, Yamauchi M, Maezawa Y, Saito S, Maeyama S, Uchikoshi T. Genetic polymorphisms of interleukin-1beta in association with the development of alcoholic liver disease in Japanese patients. Am J Gastroenterol 2000; 95 (5) 1305-1311
  • 129 McClain C, Hill D, Schmidt J, Diehl AM. Cytokines and alcoholic liver disease. Semin Liver Dis 1993; 13 (2) 170-182
  • 130 Grove J, Daly AK, Bassendine MF, Day CP. Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis. Hepatology 1997; 26 (1) 143-146
  • 131 Pastor IJ, Laso FJ, Romero A, González-Sarmiento R. -238 G>A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men. Alcohol Clin Exp Res 2005; 29 (11) 1928-1931
  • 132 Wilfred de Alwis NM, Day CP. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease. Semin Liver Dis 2007; 27 (1) 44-54
  • 133 Marcos M, Gómez-Munuera M, Pastor I, González-Sarmiento R, Laso FJ. Tumor necrosis factor polymorphisms and alcoholic liver disease: a HuGE review and meta-analysis. Am J Epidemiol 2009; 170 (8) 948-956
  • 134 Oakley F, Teoh V, Ching-A-Sue G , et al. Angiotensin II activates I kappaB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis. Gastroenterology 2009; 136 (7) 2334-2344.e1
  • 135 Marcos M, Pastor I, González-Sarmiento R, Laso FJ. A functional polymorphism of the NFKB1 gene increases the risk for alcoholic liver cirrhosis in patients with alcohol dependence. Alcohol Clin Exp Res 2009; 33 (11) 1857-1862
  • 136 Osterreicher CH, Halangk J, Berg T , et al. Evaluation of the transforming growth factor beta1 codon 25 (Arg—>Pro) polymorphism in alcoholic liver disease. Cytokine 2008; 42 (1) 18-23
  • 137 Stickel F, Osterreicher CH, Halangk J , et al. No role of matrixmetalloproteinase-3 genetic promoter polymorphism 1171 as a risk factor for cirrhosis in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (6) 959-965
  • 138 Bashir R, Day CP, James OF, Ogilvie DJ, Sykes B, Bassendine MF. No evidence for involvement of type 1 collagen structural genes in ‘genetic predisposition’ to alcoholic cirrhosis. J Hepatol 1992; 16 (3) 316-319
  • 139 Sutton A, Nahon P, Pessayre D , et al. Genetic polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol-induced cirrhosis. Cancer Res 2006; 66 (5) 2844-2852
  • 140 Nahon P, Sutton A, Pessayre D , et al. Genetic dimorphism in superoxide dismutase and susceptibility to alcoholic cirrhosis, hepatocellular carcinoma, and death. Clin Gastroenterol Hepatol 2005; 3 (3) 292-298
  • 141 Saffroy R, Pham P, Chiappini F , et al. The MTHFR 677C > T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis 2004; 25 (8) 1443-1448
  • 142 Hassan MM, Kaseb A, Etzel CJ , et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog 2013; 52 (Suppl. 01) E139-E147
  • 143 Burza MA, Pirazzi C, Maglio C , et al. PNPLA3 I148M (rs738409) genetic variant is associated with hepatocellular carcinoma in obese individuals. Dig Liver Dis 2012; 44 (12) 1037-1041
  • 144 Guyot E, Sutton A, Rufat P , et al. PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis. J Hepatol 2013; 58 (2) 312-318
  • 145 Nischalke HD, Berger C, Luda C , et al. The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. PLoS ONE 2011; 6 (11) e27087
  • 146 Valenti L, Rumi M, Galmozzi E , et al. Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology 2011; 53 (3) 791-799
  • 147 Falleti E, Fabris C, Cmet S , et al. PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver Int 2011; 31 (8) 1137-1143
  • 148 Trépo E, Nahon P, Bontempi G , et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: evidence from a meta-analysis of individual participant data. Hepatology 2014; 59 (6) 2170-2177
  • 149 Trepo E, Guyot E, Ganne-Carrie N , et al. PNPLA3 (rs738409 C>G) is a common risk variant associated with hepatocellular carcinoma in alcoholic cirrhosis. Hepatology 2012; 55 (4) 1307-1308
  • 150 Nischalke HD, Lutz P, Krämer B , et al. A common polymorphism in the NCAN gene is associated with hepatocellular carcinoma in alcoholic liver disease. J Hepatol 2014; 61 (5) 1073-1079
  • 151 Anstee QM, Liu YL, Day CP, Reeves HL. Reply to: HCC and liver disease risk in homozygous PNPLA3 p.I148M carriers approach monogenic inheritance. J Hepatol 2015; 62 (4) 982-983
  • 152 Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet 2013; 14 (8) 549-558
  • 153 Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol 2012; 57 (5) 1097-1109
  • 154 Molina PE. Alcohol—intoxicating roadblocks and bottlenecks in hepatic protein and lipid metabolism. Am J Physiol Endocrinol Metab 2008; 295 (1) E1-E2
  • 155 Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 2010; 42 (1) 21-23
  • 156 Seth D, Daly AK, Haber PS, Day CP. Patatin-like phospholipase domain containing 3: a case in point linking genetic susceptibility for alcoholic and nonalcoholic liver disease. Hepatology 2010; 51 (4) 1463-1465
  • 157 Stickel F, Buch S, Lau K , et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in Caucasians. Hepatology 2011; 53 (1) 86-95
  • 158 Trépo E, Gustot T, Degré D , et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol 2011; 55 (4) 906-912
  • 159 Nguyen-Khac E, Houchi H, Dreher ML , et al. Is pnpla3 polymorphism involved in severe acute alcoholic hepatitis. Hepatology 2011; 54: 976a
  • 160 Rosendahl J, Tönjes A, Schleinitz D , et al. A common variant of PNPLA3 (p.I148M) is not associated with alcoholic chronic pancreatitis. PLoS ONE 2012; 7 (1) e29433
  • 161 Dutta AK. Genetic factors affecting susceptibility to alcoholic liver disease in an Indian population. Ann Hepatol 2013; 12 (6) 901-907
  • 162 Burza MA, Molinaro A, Attilia ML , et al. PNPLA3 I148M (rs738409) genetic variant and age at onset of at-risk alcohol consumption are independent risk factors for alcoholic cirrhosis. Liver Int 2014; 34 (4) 514-520
  • 163 Way MJ, McQuillin A, Gurling HMD , et al. The Pnpa3 I148m mutation significantly increases the risk of developing alcohol-related cirrhosis in alcohol dependent individuals. J Hepatol 2013; 58: S563-S564