Scapular Winging Secondary to Apparent Long Thoracic Nerve Palsy in a Young Female Swimmer

Shiro Nawa1

1 Department of Judo Seifuku and Health Sciences, Faculty of Health Promotional Sciences, Tokoha University, Hamamatsu City, Shizuoka-ken, Japan


Address for correspondence Shiro Nawa, MS, Department of Judo Seifuku and Health Sciences, Faculty of Health Promotional Sciences, Tokoha University, 1230 Miyakoda-cho, Kita-ku, Hamamatsu City, Shizuoka-ken, 431-2102, Japan (e-mail: superheadspin@yahoo.co.jp).

Introduction

Winging of the scapula is a condition in which the medial border of the scapula is raised from the chest wall, resulting in a wing-like protrusion of the scapula. Scapular winging has been observed in scoliosis, deltoid contracture, Sprengel’s deformity, and infraspinatus muscle atrophy. It can also occur in dislocation of the shoulder, as well as after muscle rupture or muscular dystrophy associated with trauma.1,2 Frequently, winging of the scapula occurs because of denervation of the serratus anterior muscle due to long thoracic nerve palsy, or because of the denervation of the trapezius muscle due to accessory nerve palsy.3–7 The severity of winged scapula is variable, and although pain is not seen in every case, it will most often resolve with time, even when there is complete loss of muscle function.

The cause of long thoracic nerve palsy may be traumatic or atraumatic.8 Lesions to the long thoracic nerve may occur due to numerous and varied causes.9 Generally, however, injury to the long thoracic nerve can follow excessive upper-limb stretching, and may result from traction and/or compression between its cervical origin and its distal terminal branches in the serratus anterior muscle, the anatomical structure and innervation of which have been thoroughly described. Excessive upper-limb stretching during sports activities appears to be a significant factor.10–14

Abstract

Background In neurological diseases, winging of the scapula occurs because of serratus anterior muscle dysfunction due to long thoracic nerve palsy, or trapezius muscle dysfunction due to accessory nerve palsy. Several sports can cause long thoracic nerve palsy, including archery and tennis. To our knowledge, this is the first report of long thoracic nerve palsy in an aquatic sport.

Objective The present study is a rare case of winging of the scapula that occurred during synchronized swimming practice.

Methods The patient’s history with the present illness, examination findings, rehabilitation progress, and related medical literature are presented.

Results A 14-year-old female synchronized swimmer had chief complaints of muscle weakness, pain, and paresthesia in the right scapula. Upon examination, marked winging of the scapula appeared during anterior arm elevation, as did floating of the superior angle. After 1 year of therapy, right shoulder girdle pain and paresthesia had disappeared; however, winging of the scapula remained.

Conclusions Based on this observation and the severe pain in the vicinity of the second dorsal rib, we believe the cause was damage to the nerve proximal to the branch arising from the upper nerve trunk that innervates the serratus anterior.
A wide range of sports have been reported to cause long thoracic nerve palsy, including archery, tennis, and basketball. To our knowledge, this is the first report of long thoracic nerve palsy in aquatic sports (Table 1).

Synchronized swimming is a sport in which athletes are subjectively scored on technical merit and artistic expression during their aquatic performance. In the present study, we report a rare case of winging of the scapula that occurred during synchronized swimming practice.

Case Report

The subject was a 14-year-old female synchronized swimmer with chief complaints of muscle weakness, pain, and paresthesia in the right scapula. She had no history of neurological or muscular disease.

History of Present Illness

In mid-July 2011, while performing the butterfly stroke during synchronized swimming practice, the subject experienced severe pain in the vicinity of the second dorsal rib, as well as dislocation of the right glenohumeral joint. Thereafter, she discontinued practice and underwent an orthopedic examination several days later.

Physical Findings upon Initial Examination

Right arm manual muscle testing (MMT) grades and right shoulder joint range of motion (ROM) are listed in Tables 2 and 3, respectively. In the left shoulder, MMT and joint ROM were normal. The subject experienced paresthesia in the right shoulder girdle. In addition, when the diagnostic wall press test (WPT) was performed (pressing hands against a wall in a leaning position), distinct winging of the right scapula was observed. Due to drooping of her right shoulder, it was immobilized in a sling for 2 to 3 months. In addition, she was diagnosed with isolated paralysis of the serratus anterior muscle based on electromyography results.

Table 1 Cases of long thoracic nerve palsy due to sports, as reported in the literature

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Age</th>
<th>Sex</th>
<th>Cause</th>
<th>Period until Improvement (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregg et al</td>
<td>1979</td>
<td>23</td>
<td>M</td>
<td>Tennis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
<td>F</td>
<td>Tennis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>M</td>
<td>Ballet</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>M</td>
<td>Soccer</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>M</td>
<td>Ice hockey</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>M</td>
<td>Bowling</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>M</td>
<td>Golf</td>
<td>11</td>
</tr>
<tr>
<td>Sakamoto et al</td>
<td>1981</td>
<td>14</td>
<td>M</td>
<td>Basketball</td>
<td>6</td>
</tr>
<tr>
<td>Isayama et al</td>
<td>1982</td>
<td>20</td>
<td>M</td>
<td>Archery</td>
<td>1</td>
</tr>
<tr>
<td>Yasuda et al</td>
<td>1982</td>
<td>12</td>
<td>F</td>
<td>Softball</td>
<td>Began recovering in 2 y</td>
</tr>
<tr>
<td>Foo et al</td>
<td>1983</td>
<td>18</td>
<td>M</td>
<td>Tennis</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>F</td>
<td>Archery</td>
<td>Unknown</td>
</tr>
<tr>
<td>Ohno et al</td>
<td>1984</td>
<td>21</td>
<td>F</td>
<td>Gymnastics</td>
<td>7</td>
</tr>
<tr>
<td>Fukuzawa et al</td>
<td>1985</td>
<td>14</td>
<td>M</td>
<td>Basketball</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>F</td>
<td>Volleyball</td>
<td>5</td>
</tr>
<tr>
<td>Shimizu</td>
<td>1990</td>
<td>20</td>
<td>M</td>
<td>Archery</td>
<td>Recovering</td>
</tr>
<tr>
<td>Toizumi et al</td>
<td>1997</td>
<td>16</td>
<td>M</td>
<td>Javelin</td>
<td>7</td>
</tr>
<tr>
<td>Ebata et al</td>
<td>2005</td>
<td>27</td>
<td>M</td>
<td>Weightlifting</td>
<td>Unknown</td>
</tr>
<tr>
<td>Present case</td>
<td>2013</td>
<td>14</td>
<td>F</td>
<td>Synchronized swimming</td>
<td>Began recovering in 1 y</td>
</tr>
</tbody>
</table>

Note: Previous studies have reported patients with long thoracic nerve palsy due to sports other than aquatic sports.
Exercise Therapy
At 4 months postinjury, the subject discontinued shoulder immobilization and began rehabilitation. Rehabilitation initially consisted of passive flexion, extension, abduction, and external and internal rotation of the right glenohumeral joint; this was followed by gradual transition to active movement, and ultimately progressed to resistance exercises. In addition, the muscles surrounding the right shoulder were stretched and massaged. Two or three rehabilitation sessions were performed per week, with each session lasting ~30 minutes.

Progress
One year after beginning therapy, the right shoulder girdle pain and paresthesia had disappeared. MMT and joint ROM improved, although not completely. The subject’s MMT and ROM grades 1 year after beginning therapy are listed in Table 2 and 3, respectively. However, when shoulder abduction was 0 degree, downward rotation of the right scapula was prominent. Furthermore, WPT resulted in a distinct dorsal protrusion of the scapula, and winging of the scapula remained (Fig. 1).

Table 3 Results of the right shoulder joint range of motion examination before and after therapy

<table>
<thead>
<tr>
<th></th>
<th>Initial examination</th>
<th>One year after beginning therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passive (degrees)</td>
<td>Active (degrees)</td>
</tr>
<tr>
<td>Shoulder flexion</td>
<td>10°</td>
<td>5°</td>
</tr>
<tr>
<td>Shoulder abduction</td>
<td>20°</td>
<td>10°</td>
</tr>
<tr>
<td>Shoulder extension</td>
<td>5°</td>
<td>0°</td>
</tr>
<tr>
<td></td>
<td>130°</td>
<td>130°</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td>25°</td>
</tr>
</tbody>
</table>

Discussion
The long thoracic nerve is primarily derived from the merging of the ventral rami of branches from the fifth, sixth, and seventh cranial nerves (hereafter, “C5,” “C6,” and “C7,” respectively); this nerve consists of pure motor fibers, which innervate the serratus anterior muscle. There are many variations in the components of the long thoracic nerve. However, generally, the upper long thoracic nerve trunk, which is formed by C5 and C6, innervates the upper portion of the serratus anterior muscle. C7, which constitutes the lower long thoracic nerve trunk, merges with the upper trunk to form the common trunk, and then innervates the middle and lower portions of the serratus anterior muscle. The course of the long thoracic nerve is characterized by certain features. C5 and C6, which form the upper nerve trunk, primarily run through the anterior and middle scalene muscles; in 24 to 33% of cases, the middle scalene muscle is penetrated (Fig. 2). When the common trunk of the

---

Fig. 1 Winging of the scapula is apparent when the patient is pushing forward. The arrows show winging of the scapula.

Fig. 2 Diagram of the long thoracic nerve in a cadaver. The serratus anterior muscle consists of upper, middle, and lower portions. The upper portion is supplied mainly by the C5 nerve root. The long thoracic nerve, consisting of the C6 and C7 nerve roots, innervates the middle and lower portions. Image modified from Toizumi et al15 with the permission from Igaku-shoin.
long thoracic nerve descends behind the brachial plexus, it
angulates over the second rib, runs downward along the
thoracic wall, and innervates the middle and lower portions
of the serratus anterior muscle; its total length
is ~24 cm.1,3,21,22,28

Based on this anatomical course, there are sites where
tight facial bands of tissue may cause a “bow-string” effect
that could induce long thoracic nerve palsy. Furthermore,
there is also a possibility of traction injury of the nerve
between the middle scalene muscle and the lower portion
of the serratus anterior muscle.5,15,22,29,30

Hamada et al21 showed that the upper portion of the
serratus anterior muscle runs in a posterior direction, the
middle portion in a posteromedial direction, and the lower
portion in a posterolateral direction. Therefore, the upper,
middle, and lower portions of the serratus anterior muscle
control the anterior tilt, abduction, and upward/internal
rotation of the scapula, respectively. The serratus anterior
muscle was considered to stabilize the scapula as follows: the
upper portion of the serratus anterior muscle attaches the
superior angle of the scapula to the first and second ribs, the
middle portion attaches the medial border of the scapula to
the thorax, and the lower portion attaches the inferior angle
to the thorax. Therefore, when the superior angle is attached
to the thorax and the medial border and inferior angle of the
scapula are floating, it is inferred that the nerve distal to the
branch that arises from the upper nerve trunk and innervates
the serratus anterior is damaged. When the superior angle is
also floating, it is inferred that there is damage to the nerve
proximal to the branch described above. Winging of the
scapula associated with paralysis of the serratus anterior
muscle is prominent during anterior arm elevation. The
middle portion of the serratus anterior muscle controls
scapular abduction, while the lower portion controls upward
and interior rotation; in paralysis of the serratus anterior
muscle, these portions do not function, resulting in charac-
teristic adduction and downward rotation of the scapula. In
other words, the upper portion of the serratus anterior
muscle is innervated by branches that arise directly from
the upper long thoracic nerve trunk, which is composed
primarily of C5 and C6, while the middle and lower portions
of the serratus anterior muscle are innervated by the common
trunk. Therefore, winging of the scapula only occurs if there is
paralysis of the middle or lower portions of the serratus
anterior muscle.

The present case demonstrated prominent winging of the
scapula during anterior arm elevation, as well as floating of
the superior angle. Based on this observation and the severe
pain near the second dorsal rib, we believe the cause was
damage to the nerve proximal to the branch that arises from
the upper nerve trunk and innervates the serratus anterior
muscle.

The case reported herein presented with severe pain and
dysfunction of the serratus anterior muscle while swim-
mimg the butterfly stroke during synchronized swimming
practice. The cause of these symptoms was considered to be
compression of the long thoracic nerve between the
scapula and ribs during posterior rotation of the arm.

However, despite identical movements of the left and right
arms in the butterfly stroke, the left serratus anterior muscle
was completely undamaged. Therefore, it is inferred
that frequent use of the dominant right arm in sports and
activities of daily living can result in traction injury to the
long thoracic nerve.

Conclusion
We reported a case of long thoracic nerve palsy and winging
of the scapula that occurred during synchronized swimming
practice. It was apparent that some improvement was evident
at a 1-year follow-up examination, but full recovery was not
evident. This case shows that severe functional loss can
remain and therefore timely follow-up is necessary to moni-
tor for signs of reinnervation. Otherwise, surgical exploration
and microsurgical nerve decompression repair or nerve
transfer might be indicated. Methods to consider for moni-
toring of reinnervation are clinical examination, muscle
magnetic resonance imaging to determine resolution of
denervation edema, and electromyogram of the serratus to
detect reinnervation.

Conflict of Interest
The author does not have any conflict of interest to declare.

Acknowledgments
I would like to express my sincere gratitude to the subject
in this report for understanding the significance of the case
and her willingness to participate. I am also deeply grateful
to everyone else involved in this report.

Editorial support, in the form of development, collating
author comments, copyediting, fact checking, and
referencing, was provided by Editage, a division of Cactus
Communications Pvt. Ltd. and funded by the author.

References
1 Tsuchisawa N, Fujino H, Miyaoka H. Case report of osteochon-
droma presenting with winging of the scapula [in Japanese]. J East
Jpn Orthop Traumatol 2004;16:158–161
2 Wataya M, Maeda K, Sakamoto T, Ohwada O, Ishida K. Treatment of a
patient complaining of shoulder pain associated with winging of
3 Shimizu J. Case report of long thoracic nerve palsy presenting with
winging of the scapula associated with archery practice [in Japanese].
4 Johnson JTH, Kendall HO. Isolated paralysis of the serratus anterior
5 Gregg JR, Labosky D, Harty M, et al. Serratus anterior paralysis in the
11:505–508
7 Fiddian NJ, King RJ. The winged scapula. Clin Orthop Relat Res
1984;(185):228–236
8 Harada M, Mura N, Takahara M, Naruse T, Ogino T. Long thoracic
nerve palsy caused by fence picket penetration from axillary region to


Ebata A, Kokubun N, Miyamoto T, Hirata K. Case report of long thoracic nerve palsy in which muscle training was considered to be involved in bilateral winging of the scapula [in Japanese]. Clin Nephrol 2005;45(4):308–311


