J Knee Surg 2016; 29(02): 138-148
DOI: 10.1055/s-0035-1566739
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

In Vitro Experimental Testing of the Human Knee: A Concise Review

Lorin Maletsky
1   Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas
,
Sami Shalhoub
2   Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas
,
Fallon Fitzwater
1   Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas
,
William Eboch
1   Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas
,
Matthew Dickinson
2   Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas
,
Bardiya Akhbari
1   Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas
,
Ednah Louie
2   Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas
› Author Affiliations
Further Information

Publication History

05 May 2015

20 September 2015

Publication Date:
20 November 2015 (online)

Abstract

In vitro testing of the human knee provides valuable insight that contributes to further understanding knee biomechanics. Cadaveric testing correlates well with clinical trials because the tissue has similar properties to that of live subjects. In addition, in vitro testing allows studies to be performed that would otherwise be unethical to evaluate in vivo. Due to their many advantages, cadaveric testing has been utilized to evaluate many of medical devices and surgical techniques that have been developed in recent decades. This article aims to review the current technologies and methodologies utilized in experimental in vitro testing of the human knee. The article provides a summary of the different rigs and machines that are currently used to examine the biomechanics of the knee. It also highlights the variable experimental techniques and measurement systems that are used to collect the kinematics and kinetics of the knee joint. As technologies advance so do the measurement systems and equipment in the experimental biomechanics field. The influence of improvements to these testing equipment and measurement devices on in vitro testing of the knee will also be discussed in this review.

 
  • References

  • 1 Woo SLY, Debski RE, Withrow JD, Janaushek MA. Biomechanics of knee ligaments. Am J Sports Med 1999; 27 (4) 533-543
  • 2 Laz PJ, Pal S, Fields A, Petrella AJ, Rullkoetter PJ. Effects of knee simulator loading and alignment variability on predicted implant mechanics: a probabilistic study. J Orthop Res 2006; 24 (12) 2212-2221
  • 3 Baldwin MA, Clary CW, Fitzpatrick CK, Deacy JS, Maletsky LP, Rullkoetter PJ. Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J Biomech 2012; 45 (3) 474-483
  • 4 Lu TW, O'Connor JJ, Taylor SJG, Walker PS. Validation of a lower limb model with in vivo femoral forces telemetered from two subjects. J Biomech 1998; 31 (1) 63-69
  • 5 Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthop Res 2004; 22 (3) 625-632
  • 6 Wehner T, Claes L, Simon U. Internal loads in the human tibia during gait. Clin Biomech (Bristol, Avon) 2009; 24 (3) 299-302
  • 7 Glitsch U, Baumann W. The three-dimensional determination of internal loads in the lower extremity. J Biomech 1997; 30 (11–12) 1123-1131
  • 8 Bergmann G, Bender A, Graichen F , et al. Standardized loads acting in knee implants. PLoS ONE 2014; 9 (1) e86035
  • 9 Guess TM, Maletsky LP. Computational modelling of a total knee prosthetic loaded in a dynamic knee simulator. Med Eng Phys 2005; 27 (5) 357-367
  • 10 Fitzpatrick CK, Baldwin MA, Clary CW, Maletsky LP, Rullkoetter PJ. Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis. Comput Methods Biomech Biomed Engin 2014; 17 (4) 360-369
  • 11 Blankevoort L, Huiskes R, de Lange A. The envelope of passive knee joint motion. J Biomech 1988; 21 (9) 705-720
  • 12 Elias JJ, Kirkpatrick MS, Saranathan A, Mani S, Smith LG, Tanaka MJ. Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study. Clin Biomech (Bristol, Avon) 2011; 26 (8) 841-846
  • 13 Amis AA, Senavongse W, Bull AMJ. Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 2006; 24 (12) 2201-2211
  • 14 Shalhoub S, Maletsky LP. Variation in patellofemoral kinematics due to changes in quadriceps loading configuration during in vitro testing. J Biomech 2014; 47 (1) 130-136
  • 15 Mane AM, Clary CW, Reeve AN, Maletsky LP, Dodd KA. Change in knee passive envelope of motion with total knee replacement design. In: 2008 Summer Bioengineering Conference; June 25–29, 2008; Marco Island, FL
  • 16 Grood ES, Stowers SF, Noyes FR. Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures. J Bone Joint Surg Am 1988; 70 (1) 88-97
  • 17 Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 2000; 82 (8) 1189-1195
  • 18 Victor J, Labey L, Wong P, Innocenti B, Bellemans J. The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 2010; 28 (4) 419-428
  • 19 MacWilliams BA, Wilson DR, DesJardins JD, Romero J, Chao EYS. Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. J Orthop Res 1999; 17 (6) 817-822
  • 20 Maletsky LP, Hillberry BM. Simulating dynamic activities using a five-axis knee simulator. J Biomech Eng 2005; 127 (1) 123-133
  • 21 Walker PS, Haider H. Characterizing the motion of total knee replacements in laboratory tests. Clin Orthop Relat Res 2003; (410) 54-68
  • 22 Zavatsky AB. A kinematic-freedom analysis of a flexed-knee-stance testing rig. J Biomech 1997; 30 (3) 277-280
  • 23 Roberti F, Sekhar LN, Kalavakonda C, Wright DC. –Posterior fossa meningiomas: surgical experience in 161 cases. Surg Neurol 2001; 56 (1) 8-20 ; discussion 20–21
  • 24 Miller MC, Zhang AX, Petrella AJ, Berger RA, Rubash HE. The effect of component placement on knee kinetics after arthroplasty with an unconstrained prosthesis. J Orthop Res 2001; 19 (4) 614-620
  • 25 Steinbrück A, Schröder C, Woiczinski M, Fottner A, Müller PE, Jansson V. Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 2013; 12: 58
  • 26 Müller O, Lo J, Wünschel M, Obloh C, Wülker N. Simulation of force loaded knee movement in a newly developed in vitro knee simulator. Biomed Tech (Berl) 2009; 54 (3) 142-149
  • 27 DesJardins JD, Walker PS, Haider H, Perry J. The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity. J Biomech 2000; 33 (10) 1231-1242
  • 28 Gilbert S, Chen T, Hutchinson ID , et al. Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living. J Biomech 2014; 47 (9) 2006-2012
  • 29 Kanamori A, Woo SLY, Ma CB , et al. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy 2000; 16 (6) 633-639
  • 30 Li G, Zayontz S, Most E, Otterberg E, Sabbag K, Rubash HE. Cruciate-retaining and cruciate-substituting total knee arthroplasty: an in vitro comparison of the kinematics under muscle loads. J Arthroplasty 2001; 16 (8) (Suppl. 01) 150-156
  • 31 Rudy TW, Livesay GA, Woo SLY, Fu FH. A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 1996; 29 (10) 1357-1360
  • 32 Suzuki T, Shino K, Otsubo H , et al. Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Arthroscopy 2014; 30 (10) 1294-1302
  • 33 Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA. The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 2015; 31 (3) 435-444
  • 34 Mueller JK, Wentorf FA, Moore RE. Femoral and tibial insert downsizing increases the laxity envelope in TKA. Knee Surg Sports Traumatol Arthrosc 2014; 22 (12) 3003-3011
  • 35 Sasaki N, Farraro KF, Kim KE, Woo SL-Y. Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction: a cadaveric study. Am J Sports Med 2014; 42 (3) 723-730
  • 36 Ding B, Stanley RM, Cazzolato BS, Costi JJ. Real-time FPGA control of a hexapod robot for 6-dof biomechanical testing. In: Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society; November 07–10, 2011; Australia
  • 37 Mutnal A, Leo BM, Vargas L, Colbrunn RW, Butler RS, Uribe JW. Biomechanical analysis of posterior cruciate ligament reconstruction with aperture femoral fixation. Orthopedics 2015; 38 (1) 9-16
  • 38 Noble Jr LD, Colbrunn RW, Lee D-G, van den Bogert AJ, Davis BL. Design and validation of a general purpose robotic testing system for musculoskeletal applications. J Biomech Eng 2010; 132 (2) 025001-025001
  • 39 Atarod M, Rosvold JM, Frank CB, Shrive NG. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage. Ann Biomed Eng 2014; 42 (5) 1121-1132
  • 40 Liu W, Panjabi MM. On improving the accuracy of instrumented spatial linkage system. J Biomech 1996; 29 (10) 1383-1385
  • 41 Maletsky LP, Sun J, Morton NA. Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J Biomech 2007; 40 (3) 682-685
  • 42 Lujan TJ, Lake SP, Plaizier TA, Ellis BJ, Weiss JA. Simultaneous measurement of three-dimensional joint kinematics and ligament strains with optical methods. J Biomech Eng 2005; 127 (1) 193-197
  • 43 Bull AM, Berkshire FH, Amis AA. Accuracy of an electromagnetic measurement device and application to the measurement and description of knee joint motion. Proc Inst Mech Eng H 1998; 212 (5) 347-355
  • 44 Amis AA, Oguz C, Bull AM, Senavongse W, Dejour D. The effect of trochleoplasty on patellar stability and kinematics: a biomechanical study in vitro. J Bone Joint Surg Br 2008; 90 (7) 864-869
  • 45 Bachus KN, DeMarco AL, Judd KT, Horwitz DS, Brodke DS. Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems. Med Eng Phys 2006; 28 (5) 483-488
  • 46 Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 1980; 51 (6) 871-879
  • 47 Kimizuka M, Kurosawa H, Fukubayashi T. Load-bearing pattern of the ankle joint. Contact area and pressure distribution. Arch Orthop Trauma Surg 1980; 96 (1) 45-49
  • 48 Fregly BJ, Sawyer WG. Estimation of discretization errors in contact pressure measurements. J Biomech 2003; 36 (4) 609-613
  • 49 Liu F, Gadikota HR, Kozánek M , et al. In vivo length patterns of the medial collateral ligament during the stance phase of gait. Knee Surg Sports Traumatol Arthrosc 2011; 19 (5) 719-727
  • 50 Taylor KA, Terry ME, Utturkar GM , et al. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech 2011; 44 (3) 365-371
  • 51 Park SE, DeFrate LE, Suggs JF, Gill TJ, Rubash HE, Li G. The change in length of the medial and lateral collateral ligaments during in vivo knee flexion. Knee 2005; 12 (5) 377-382
  • 52 Barry D, Ahmed AM. Design and performance of a modified buckle transducer for the measurement of ligament tension. J Biomech Eng 1986; 108 (2) 149-152
  • 53 Fukashiro S, Komi PV, Järvinen M, Miyashita M. In vivo Achilles tendon loading during jumping in humans. Eur J Appl Physiol Occup Physiol 1995; 71 (5) 453-458
  • 54 Ravary B, Pourcelot P, Bortolussi C, Konieczka S, Crevier-Denoix N. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin Biomech (Bristol, Avon) 2004; 19 (5) 433-447
  • 55 Lewis JL, Lew WD, Schmidt J. A note on the application and evaluation of the buckle transducer for the knee ligament force measurement. J Biomech Eng 1982; 104 (2) 125-128
  • 56 Fleming BC, Beynnon BD. In vivo measurement of ligament/tendon strains and forces: a review. Ann Biomed Eng 2004; 32 (3) 318-328
  • 57 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 2006; 34 (2) 269-274
  • 58 Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech 1998; 31 (6) 519-525
  • 59 Fleming BC, Beynnon BD, Renstrom PA, Peura GD, Nichols CE, Johnson RJ. The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am J Sports Med 1998; 26 (1) 109-118
  • 60 Beynnon BD, Johnson RJ, Fleming BC , et al. The effect of functional knee bracing on the anterior cruciate ligament in the weightbearing and nonweightbearing knee. Am J Sports Med 1997; 25 (3) 353-359
  • 61 Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 1992; 25 (5) 511-518
  • 62 Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys 2005; 27 (10) 845-861
  • 63 Glos DL, Butler DL, Grood ES, Levy MS. In vitro evaluation of an implantable force transducer (IFT) in a patellar tendon model. J Biomech Eng 1993; 115 (4A): 335-343
  • 64 Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI. In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech 1994; 27 (5) 517-526
  • 65 Herzog W, Archambault JM, Leonard TR, Nguyen HK. Evaluation of the implantable force transducer for chronic tendon-force recordings. J Biomech 1996; 29 (1) 103-109
  • 66 Roriz P, Carvalho L, Frazão O, Santos JL, Simões JA. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review. J Biomech 2014; 47 (6) 1251-1261
  • 67 Finni T, Komi PV, Lukkariniemi J. Achilles tendon loading during walking: application of a novel optic fiber technique. Eur J Appl Physiol Occup Physiol 1998; 77 (3) 289-291
  • 68 Erdemir A, Piazza SJ, Sharkey NA. Influence of loading rate and cable migration on fiberoptic measurement of tendon force. J Biomech 2002; 35 (6) 857-862
  • 69 Erdemir A, Hamel AJ, Piazza SJ, Sharkey NA. Fiberoptic measurement of tendon forces is influenced by skin movement artifact. J Biomech 2003; 36 (3) 449-455
  • 70 Blankevoort L, Huiskes R, de Lange A. Recruitment of knee joint ligaments. J Biomech Eng 1991; 113 (1) 94-103
  • 71 Cyr AJ, Maletsky LP. Unified quantification of variation in passive knee joint constraint. Proc Inst Mech Eng H 2014; 228 (5) 494-500
  • 72 Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech (Bristol, Avon) 1998; 13 (7) 455-472
  • 73 Kutzner I, Heinlein B, Graichen F , et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 2010; 43 (11) 2164-2173
  • 74 Oh YK, Kreinbrink JL, Wojtys EM, Ashton-Miller JA. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 2012; 30 (4) 528-534
  • 75 Demetropoulos CK, Sengupta DK, Knaub MA , et al. Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis. Spine 2010; 35 (1) 26-31
  • 76 Austin MS, Vaccaro AR, Brislin B, Nachwalter R, Hilibrand AS, Albert TJ. Image-guided spine surgery: a cadaver study comparing conventional open laminoforaminotomy and two image-guided techniques for pedicle screw placement in posterolateral fusion and nonfusion models. Spine 2002; 27 (22) 2503-2508
  • 77 Ahn HS, DiAngelo DJ. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study. Spine 2007; 32 (11) E330-E336
  • 78 Wilson DR, Moses JM, Zilberfarb JL, Hayes WC. Mechanics of coracoacromial ligament transfer augmentation for acromioclavicular joint injuries. J Biomech 2005; 38 (3) 615-619
  • 79 Karduna AR, Williams GR, Williams JL, Iannotti JP. Joint stability after total shoulder arthroplasty in a cadaver model. J Shoulder Elbow Surg 1997; 6 (6) 506-511
  • 80 Mardula KL, Balasubramanian R, Allan CH. Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study. Hand (NY) 2015; 10 (1) 116-122
  • 81 Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthritis Cartilage 2005; 13 (11) 958-963
  • 82 Mootanah R, Imhauser CW, Reisse F , et al. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Comput Methods Biomech Biomed Engin 2014; 17 (13) 1502-1517
  • 83 DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 2004; 32 (2) 477-483
  • 84 Bergfeld JA, McAllister DR, Parker RD, Valdevit AD, Kambic HE. A biomechanical comparison of posterior cruciate ligament reconstruction techniques. Am J Sports Med 2001; 29 (2) 129-136
  • 85 Nicholls RL, Schirm AC, Jeffcote BO, Kuster MS. Tibiofemoral force following total knee arthroplasty: comparison of four prosthesis designs in vitro. J Orthop Res 2007; 25 (11) 1506-1512
  • 86 Amiri S, Cooke D, Kim IY, Wyss U. Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion. Proc Inst Mech Eng H 2007; 221 (8) 821-832
  • 87 Tienen TG, Buma P, Scholten JG, van Kampen A, Veth RP, Verdonschot N. Displacement of the medial meniscus within the passive motion characteristics of the human knee joint: an RSA study in human cadaver knees. Knee Surg Sports Traumatol Arthrosc 2005; 13 (4) 287-292