Semin Respir Crit Care Med 2015; 36(06): 809-822
DOI: 10.1055/s-0035-1564852
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Personalized Critical Care Medicine: How Far Away Are We?

Amy M. Ahasic
1   Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
,
David C. Christiani
2   Department of Environmental Genetics, Harvard School of Public Health, Harvard Medical School and Massachusetts General Hospital, Harvard, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
23 November 2015 (online)

Abstract

Personalized medicine has typically referred to the use of genomics in clinical care. However, the concept more broadly refers to recognizing the heterogeneity of each individual patient, particularly their unique risk factors for developing disease or having poor outcomes, and using this to inform treatment decisions. Pharmacogenomics was perhaps the first major clinical application that came out of the Human Genome Project, but its translation to the critical care arena has been limited by numerous factors. Biomarkers have been widely studied in critical illnesses such as sepsis and acute respiratory distress syndrome in an attempt to aid in accurate diagnostic classification, to predict outcomes, and to assess response to therapy. Clinical use of such biomarkers has remained limited, but multi-biomarker panels have attempted to better reflect the complex physiology of critical illness, and to assist in design and recruitment for clinical trials. Genetic association and gene expression studies have been aimed at classifying risk for and severity in disease, as well as in predicting outcomes. While our understanding of the pathogenesis of critical illness has progressed significantly, the clinical utility of genetic markers remains limited. Novel methods are reaching closer to clinically applicable platforms, both for use in clinical trials and in direct patient care. Although we are not yet living in an era of personalized and precise medical care in the intensive care unit, the future is promising.

 
  • References

  • 1 Collins FS. Shattuck lecture—medical and societal consequences of the Human Genome Project. N Engl J Med 1999; 341 (1) 28-37
  • 2 Hood L. Systems biology: integrating technology, biology, and computation. Mech Ageing Dev 2003; 124 (1) 9-16
  • 3 Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 2011; 8 (3) 184-187
  • 4 Agustí A, Antó JM, Auffray C , et al. Personalized respiratory medicine: exploring the horizon, addressing the issues. Summary of a BRN-AJRCCM workshop held in Barcelona on June 12, 2014. Am J Respir Crit Care Med 2015; 191 (4) 391-401
  • 5 Wendon J. Critical care “normality”: individualized versus protocolized care. Crit Care Med 2010; 38 (10, Suppl): S590-S599
  • 6 Barochia AV, Cui X, Eichacker PQ. The Surviving Sepsis Campaign's revised sepsis bundles. Curr Infect Dis Rep 2013; 15 (5) 385-393
  • 7 Shah RR, Shah DR. Personalized medicine: is it a pharmacogenetic mirage?. Br J Clin Pharmacol 2012; 74 (4) 698-721
  • 8 Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med 2010; 363 (4) 301-304
  • 9 Allen JM, Gelot S. Pharmacogenomics in the intensive care unit: focus on potential implications for clinical practice. Recent Pat Biotechnol 2014; 8 (2) 116-122
  • 10 Freeman BD, McLeod HL. Challenges of implementing pharmacogenetics in the critical care environment. Nat Rev Drug Discov 2004; 3 (1) 88-93
  • 11 Bodin L, Verstuyft C, Tregouet DA , et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 2005; 106 (1) 135-140
  • 12 McGuire MC, Nogueira CP, Bartels CF , et al. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc Natl Acad Sci U S A 1989; 86 (3) 953-957
  • 13 Hamdy SI, Hiratsuka M, Narahara K , et al. Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. Br J Clin Pharmacol 2003; 55 (6) 560-569
  • 14 Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing—recalibrating expectations. N Engl J Med 2013; 369 (24) 2273-2275
  • 15 Kimmel SE, French B, Kasner SE , et al; COAG Investigators. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 2013; 369 (24) 2283-2293
  • 16 Pirmohamed M, Burnside G, Eriksson N , et al; EU-PACT Group. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013; 369 (24) 2294-2303
  • 17 Holliday SF, Kane-Gill SL, Empey PE, Buckley MS, Smithburger PL. Interpatient variability in dexmedetomidine response: a survey of the literature. ScientificWorldJournal 2014; 2014 (14) 805013
  • 18 Choi L, Caffo BS, Kohli U , et al. A Bayesian hierarchical nonlinear mixture model in the presence of artifactual outliers in a population pharmacokinetic study. J Pharmacokinet Pharmacodyn 2011; 38 (5) 613-636
  • 19 Kohli U, Pandharipande P, Muszkat M , et al. CYP2A6 genetic variation and dexmedetomidine disposition. Eur J Clin Pharmacol 2012; 68 (6) 937-942
  • 20 Kohli U, Muszkat M, Sofowora GG , et al. Effects of variation in the human alpha2A- and alpha2C-adrenoceptor genes on cognitive tasks and pain perception. Eur J Pain 2010; 14 (2) 154-159
  • 21 Kurnik D, Muszkat M, Sofowora GG , et al. Ethnic and genetic determinants of cardiovascular response to the selective alpha 2-adrenoceptor agonist dexmedetomidine. Hypertension 2008; 51 (2) 406-411
  • 22 Kurnik D, Muszkat M, Li C , et al. Genetic variations in the α(2A)-adrenoreceptor are associated with blood pressure response to the agonist dexmedetomidine. Circ Cardiovasc Genet 2011; 4 (2) 179-187
  • 23 Yağar S, Yavaş S, Karahalil B. The role of the ADRA2A C1291G genetic polymorphism in response to dexmedetomidine on patients undergoing coronary artery surgery. Mol Biol Rep 2011; 38 (5) 3383-3389
  • 24 Muszkat M, Sofowora GG, Xie HG, Wood AJ, Stein CM. Alpha2B adrenergic receptor 301-303 deletion polymorphism and vascular alpha2 adrenergic receptor response. Pharmacogenet Genomics 2005; 15 (1) 23-28
  • 25 Dellinger RP, Levy MM, Rhodes A , et al; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41 (2) 580-637
  • 26 Anantasit N, Boyd JH, Walley KR, Russell JA. Serious adverse events associated with vasopressin and norepinephrine infusion in septic shock. Crit Care Med 2014; 42 (8) 1812-1820
  • 27 Christaki E. Personalized medicine in sepsis: the coming of age. Expert Rev Anti Infect Ther 2013; 11 (7) 645-647
  • 28 Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev 2012; 25 (4) 609-634
  • 29 Ferrer R, Artigas A. Physiologic parameters as biomarkers: what can we learn from physiologic variables and variation?. Crit Care Clin 2011; 27 (2) 229-240
  • 30 Talmor D, Sarge T, Malhotra A , et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 31 Grasso S, Terragni P, Birocco A , et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 2012; 38 (3) 395-403
  • 32 Schranz C, Becher T, Schädler D, Weiler N, Möller K. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation. Physiol Meas 2014; 35 (3) 383-397
  • 33 Soroksky A, Esquinas A. Goal-directed mechanical ventilation: are we aiming at the right goals? A proposal for an alternative approach aiming at optimal lung compliance, guided by esophageal pressure in acute respiratory failure. Crit Care Res Pract 2012; 2012 (12) 597932
  • 34 Group BDW ; Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69 (3) 89-95
  • 35 Sandquist M, Wong HR. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Rev Clin Immunol 2014; 10 (10) 1349-1356
  • 36 Charles PE, Gibot S. Predicting outcome in patients with sepsis: new biomarkers for old expectations. Crit Care 2014; 18 (1) 108
  • 37 Casserly B, Read R, Levy MM. Multimarker panels in sepsis. Crit Care Clin 2011; 27 (2) 391-405
  • 38 Konstantinides SV. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35 (45) 3145-3146
  • 39 Jaff MR, McMurtry MS, Archer SL , et al; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 2011; 123 (16) 1788-1830
  • 40 Koyner JL, Parikh CR. Clinical utility of biomarkers of AKI in cardiac surgery and critical illness. Clin J Am Soc Nephrol 2013; 8 (6) 1034-1042
  • 41 Ostermann M. Diagnosis of acute kidney injury: Kidney Disease Improving Global Outcomes criteria and beyond. Curr Opin Crit Care 2014; 20 (6) 581-587
  • 42 Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2015; 10 (1) 147-155
  • 43 Gentile LF, Cuenca AG, Vanzant EL , et al. Is there value in plasma cytokine measurements in patients with severe trauma and sepsis?. Methods 2013; 61 (1) 3-9
  • 44 Vincent JL, Teixeira L. Sepsis biomarkers. Value and limitations. Am J Respir Crit Care Med 2014; 190 (10) 1081-1082
  • 45 Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care 2010; 14 (1) R15
  • 46 Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet 2014; 86 (1) 56-61
  • 47 Hack CE, De Groot ER, Felt-Bersma RJ , et al. Increased plasma levels of interleukin-6 in sepsis. Blood 1989; 74 (5) 1704-1710
  • 48 Damas P, Ledoux D, Nys M , et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 1992; 215 (4) 356-362
  • 49 Patel RT, Deen KI, Youngs D, Warwick J, Keighley MR. Interleukin 6 is a prognostic indicator of outcome in severe intra-abdominal sepsis. Br J Surg 1994; 81 (9) 1306-1308
  • 50 Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34 (7) 1996-2003
  • 51 Upadhyay S, Niederman MS. Biomarkers: what is their benefit in the identification of infection, severity assessment, and management of community-acquired pneumonia?. Infect Dis Clin North Am 2013; 27 (1) 19-31
  • 52 Müller F, Christ-Crain M, Bregenzer T , et al; ProHOSP Study Group. Procalcitonin levels predict bacteremia in patients with community-acquired pneumonia: a prospective cohort trial. Chest 2010; 138 (1) 121-129
  • 53 Masiá M, Gutiérrez F, Shum C , et al. Usefulness of procalcitonin levels in community-acquired pneumonia according to the patients outcome research team pneumonia severity index. Chest 2005; 128 (4) 2223-2229
  • 54 Christ-Crain M, Stolz D, Bingisser R , et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med 2006; 174 (1) 84-93
  • 55 Schuetz P, Christ-Crain M, Thomann R , et al; ProHOSP Study Group. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 2009; 302 (10) 1059-1066
  • 56 Schuetz P, Müller B, Christ-Crain M , et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2012; 9: CD007498
  • 57 Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 2007; 7 (3) 210-217
  • 58 Shehabi Y, Sterba M, Garrett PM , et al; ProGUARD Study Investigators; ANZICS Clinical Trials Group. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled trial. Am J Respir Crit Care Med 2014; 190 (10) 1102-1110
  • 59 Jensen JU, Hein L, Lundgren B , et al; Procalcitonin And Survival Study (PASS) Group. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med 2011; 39 (9) 2048-2058
  • 60 Pizzolato E, Ulla M, Galluzzo C , et al. Role of presepsin for the evaluation of sepsis in the emergency department. Clin Chem Lab Med 2014; 52 (10) 1395-1400
  • 61 Ackland GL, Prowle JR. Presepsin: solving a soluble (CD14) problem in sepsis?. Intensive Care Med 2015; 41 (2) 351-353
  • 62 Masson S, Caironi P, Spanuth E , et al; ALBIOS Study Investigators. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care 2014; 18 (1) R6
  • 63 Takahashi G, Shibata S, Ishikura H , et al. Presepsin in the prognosis of infectious diseases and diagnosis of infectious disseminated intravascular coagulation: a prospective, multicentre, observational study. Eur J Anaesthesiol 2015; 32 (3) 199-206
  • 64 Behnes M, Bertsch T, Lepiorz D , et al. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Crit Care 2014; 18 (5) 507
  • 65 Masson S, Caironi P, Fanizza C , et al. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Med 2015; 41 (1) 12-20
  • 66 Kofoed K, Andersen O, Kronborg G , et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care 2007; 11 (2) R38
  • 67 Shapiro NI, Trzeciak S, Hollander JE , et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med 2009; 37 (1) 96-104
  • 68 Gibot S, Béné MC, Noel R , et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med 2012; 186 (1) 65-71
  • 69 Wong HR, Lindsell CJ, Pettilä V , et al. A multibiomarker-based outcome risk stratification model for adult septic shock. Crit Care Med 2014; 42 (4) 781-789
  • 70 Al-Attas OS, Al-Daghri NM, Alokail MS , et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol 2010; 163 (4) 601-607
  • 71 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 72 Cross LJ, Matthay MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin 2011; 27 (2) 355-377
  • 73 Barnett N, Ware LB. Biomarkers in acute lung injury—marking forward progress. Crit Care Clin 2011; 27 (3) 661-683
  • 74 Pittet JF, Mackersie RC, Martin TR, Matthay MA. Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 1997; 155 (4) 1187-1205
  • 75 Binnie A, Tsang JL, dos Santos CC. Biomarkers in acute respiratory distress syndrome. Curr Opin Crit Care 2014; 20 (1) 47-55
  • 76 Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials. Semin Respir Crit Care Med 2013; 34 (4) 537-548
  • 77 Bernard GR, Artigas A, Brigham KL , et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149 (3, Pt 1): 818-824
  • 78 Ranieri VM, Rubenfeld GD, Thompson BT , et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 79 Bajwa EK, Khan UA, Januzzi JL, Gong MN, Thompson BT, Christiani DC. Plasma C-reactive protein levels are associated with improved outcome in ARDS. Chest 2009; 136 (2) 471-480
  • 80 Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 2001; 107 (12) 1529-1536
  • 81 Ward PA. Role of complement, chemokines, and regulatory cytokines in acute lung injury. Ann N Y Acad Sci 1996; 796: 104-112
  • 82 Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 2003; 14 (6) 523-535
  • 83 Geiser T, Atabai K, Jarreau PH, Ware LB, Pugin J, Matthay MA. Pulmonary edema fluid from patients with acute lung injury augments in vitro alveolar epithelial repair by an IL-1beta-dependent mechanism. Am J Respir Crit Care Med 2001; 163 (6) 1384-1388
  • 84 Geiser T, Jarreau PH, Atabai K, Matthay MA. Interleukin-1beta augments in vitro alveolar epithelial repair. Am J Physiol Lung Cell Mol Physiol 2000; 279 (6) L1184-L1190
  • 85 Ranieri VM, Suter PM, Tortorella C , et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282 (1) 54-61
  • 86 Pugin J, Ricou B, Steinberg KP, Suter PM, Martin TR. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. Am J Respir Crit Care Med 1996; 153 (6, Pt 1): 1850-1856
  • 87 Suter PM, Suter S, Girardin E, Roux-Lombard P, Grau GE, Dayer JM. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis 1992; 145 (5) 1016-1022
  • 88 Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 1995; 108 (5) 1303-1314
  • 89 Meduri GU, Headley S, Kohler G , et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 1995; 107 (4) 1062-1073
  • 90 Bastarache JA, Ware LB, Bernard GR. The role of the coagulation cascade in the continuum of sepsis and acute lung injury and acute respiratory distress syndrome. Semin Respir Crit Care Med 2006; 27 (4) 365-376
  • 91 Ware LB, Koyama T, Billheimer DD , et al; NHLBI ARDS Clinical Trials Network. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 2010; 137 (2) 288-296
  • 92 Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL, Eisner MD ; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 2007; 35 (8) 1821-1828
  • 93 Moalli R, Doyle JM, Tahhan HR, Hasan FM, Braman SS, Saldeen T. Fibrinolysis in critically ill patients. Am Rev Respir Dis 1989; 140 (2) 287-293
  • 94 Prabhakaran P, Ware LB, White KE, Cross MT, Matthay MA, Olman MA. Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2003; 285 (1) L20-L28
  • 95 Jalkanen V, Yang R, Linko R , et al; FINNALI Study Group. SuPAR and PAI-1 in critically ill, mechanically ventilated patients. Intensive Care Med 2013; 39 (3) 489-496
  • 96 Ware LB, Fang X, Matthay MA. Protein C and thrombomodulin in human acute lung injury. Am J Physiol Lung Cell Mol Physiol 2003; 285 (3) L514-L521
  • 97 Wei Y, Wang Z, Su L , et al. Platelet count mediates the contribution of a genetic variant in LRRC16A to ARDS risk. Chest 2015; 147 (3) 607-617
  • 98 Verghese GM, McCormick-Shannon K, Mason RJ, Matthay MA. Hepatocyte growth factor and keratinocyte growth factor in the pulmonary edema fluid of patients with acute lung injury. Biologic and clinical significance. Am J Respir Crit Care Med 1998; 158 (2) 386-394
  • 99 Maitre B, Boussat S, Jean D , et al. Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury. Eur Respir J 2001; 18 (1) 100-106
  • 100 Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 164 (9) 1601-1605
  • 101 Ware LB, Kaner RJ, Crystal RG , et al. VEGF levels in the alveolar compartment do not distinguish between ARDS and hydrostatic pulmonary oedema. Eur Respir J 2005; 26 (1) 101-105
  • 102 Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med 2002; 166 (10) 1332-1337
  • 103 Ong T, McClintock DE, Kallet RH, Ware LB, Matthay MA, Liu KD. Ratio of angiopoietin-2 to angiopoietin-1 as a predictor of mortality in acute lung injury patients. Crit Care Med 2010; 38 (9) 1845-1851
  • 104 Bhandari V, Choo-Wing R, Lee CG , et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 2006; 12 (11) 1286-1293
  • 105 van der Heijden M, van Nieuw Amerongen GP, Koolwijk P, van Hinsbergh VW, Groeneveld AB. Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax 2008; 63 (10) 903-909
  • 106 Agrawal A, Matthay MA, Kangelaris KN , et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 2013; 187 (7) 736-742
  • 107 Rubin DB, Wiener-Kronish JP, Murray JF , et al. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 1990; 86 (2) 474-480
  • 108 Modig J, Bagge L. Specific coagulation and fibrinolysis tests as biochemical markers in traumatic-induced adult respiratory distress syndrome. Resuscitation 1986; 13 (2) 87-95
  • 109 Moss M, Ackerson L, Gillespie MK, Moore FA, Moore EE, Parsons PE. von Willebrand factor antigen levels are not predictive for the adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151 (1) 15-20
  • 110 Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med 2004; 170 (7) 766-772
  • 111 Griffiths MJ, McAuley DF. RAGE: a biomarker for acute lung injury. Thorax 2008; 63 (12) 1034-1036
  • 112 Su X, Looney MR, Gupta N, Matthay MA. Receptor for advanced glycation end-products (RAGE) is an indicator of direct lung injury in models of experimental lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 297 (1) L1-L5
  • 113 Uchida T, Shirasawa M, Ware LB , et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 2006; 173 (9) 1008-1015
  • 114 Fremont RD, Koyama T, Calfee CS , et al. Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma 2010; 68 (5) 1121-1127
  • 115 Bajwa EK, Januzzi JL, Gong MN, Thompson BT, Christiani DC. Prognostic value of plasma N-terminal probrain natriuretic peptide levels in the acute respiratory distress syndrome. Crit Care Med 2008; 36 (8) 2322-2327
  • 116 Bajwa EK, Boyce PD, Januzzi JL, Gong MN, Thompson BT, Christiani DC. Biomarker evidence of myocardial cell injury is associated with mortality in acute respiratory distress syndrome. Crit Care Med 2007; 35 (11) 2484-2490
  • 117 Rivara MB, Bajwa EK, Januzzi JL, Gong MN, Thompson BT, Christiani DC. Prognostic significance of elevated cardiac troponin-T levels in acute respiratory distress syndrome patients. PLoS ONE 2012; 7 (7) e40515
  • 118 Bajwa EK, Volk JA, Christiani DC , et al; National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Network. Prognostic and diagnostic value of plasma soluble suppression of tumorigenicity-2 concentrations in acute respiratory distress syndrome. Crit Care Med 2013; 41 (11) 2521-2531
  • 119 Ahasic AM, Zhai R, Su L , et al. IGF1 and IGFBP3 in acute respiratory distress syndrome. Eur J Endocrinol 2012; 166 (1) 121-129
  • 120 Ware LB, Koyama T, Zhao Z , et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care 2013; 17 (5) R253
  • 121 Calfee CS, Ware LB, Glidden DV , et al; National Heart, Blood, and Lung Institute Acute Respiratory Distress Syndrome Network. Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med 2011; 39 (4) 711-717
  • 122 Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA ; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014; 2 (8) 611-620
  • 123 Yende S, Kammerer CM, Angus DC. Genetics and proteomics: deciphering gene association studies in critical illness. Crit Care 2006; 10 (4) 227
  • 124 Meyer NJ, Garcia JG. Wading into the genomic pool to unravel acute lung injury genetics. Proc Am Thorac Soc 2007; 4 (1) 69-76
  • 125 Flores C. Host genetics shapes adult sepsis survival. Lancet Respir Med 2015; 3 (1) 7-8
  • 126 Sørensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 1988; 318 (12) 727-732
  • 127 Sutherland AM, Walley KR. Bench-to-bedside review: association of genetic variation with sepsis. Crit Care 2009; 13 (2) 210
  • 128 Lin MT, Albertson TE. Genomic polymorphisms in sepsis. Crit Care Med 2004; 32 (2) 569-579
  • 129 Man M, Close SL, Shaw AD , et al. Beyond single-marker analyses: mining whole genome scans for insights into treatment responses in severe sepsis. Pharmacogenomics J 2013; 13 (3) 218-226
  • 130 Rautanen A, Mills TC, Gordon AC , et al; ESICM/ECCRN GenOSept Investigators. Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir Med 2015; 3 (1) 53-60
  • 131 Bernard GR, Vincent JL, Laterre PF , et al; Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344 (10) 699-709
  • 132 Wong HR, Cvijanovich N, Lin R , et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med 2009; 7: 34
  • 133 Wong HR, Cvijanovich NZ, Anas N , et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med 2015; 191 (3) 309-315
  • 134 Flores C, Ma SF, Maresso K, Ahmed O, Garcia JG. Genomics of acute lung injury. Semin Respir Crit Care Med 2006; 27 (4) 389-395
  • 135 Meyer NJ. Beyond single-nucleotide polymorphisms: genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med 2014; 35 (4) 673-684
  • 136 Meyer NJ, Christie JD. Genetic heterogeneity and risk of acute respiratory distress syndrome. Semin Respir Crit Care Med 2013; 34 (4) 459-474
  • 137 Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296 (5) L713-L725
  • 138 Tejera P, Meyer NJ, Chen F , et al. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet 2012; 49 (11) 671-680
  • 139 Christie JD, Wurfel MM, Feng R , et al; Trauma ALI SNP Consortium (TASC) investigators. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS ONE 2012; 7 (1) e28268
  • 140 Howrylak JA, Dolinay T, Lucht L , et al. Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics 2009; 37 (2) 133-139