J Pediatr Genet 2015; 04(03): 159-167
DOI: 10.1055/s-0035-1564443
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith–Magenis and Potocki–Lupski Syndromes

Juanita Neira-Fresneda
1   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
,
Lorraine Potocki
1   Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
2   Texas Children's Hospital, Houston, Texas, United States
› Author Affiliations
Further Information

Publication History

19 June 2015

23 June 2015

Publication Date:
28 September 2015 (online)

Abstract

Smith–Magenis syndrome (SMS) and Potocki–Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid–inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome.

 
  • References

  • 1 Zody MC, Garber M, Adams DJ , et al. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature 2006; 440 (7087) 1045-1049
  • 2 Liu P, Lacaria M, Zhang F, Withers M, Hastings PJ, Lupski JR. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 2011; 89 (4) 580-588
  • 3 Slager RE, Newton TL, Vlangos CN, Finucane B, Elsea SH. Mutations in RAI1 associated with Smith-Magenis syndrome. Nat Genet 2003; 33 (4) 466-468
  • 4 Fragoso YD, Stoney PN, Shearer KD , et al. Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders. Brain Struct Funct 2015; 220 (2) 1195-1203
  • 5 Schmickel RD. Contiguous gene syndromes: a component of recognizable syndromes. J Pediatr 1986; 109 (2) 231-241
  • 6 Chen KS, Manian P, Koeuth T , et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997; 17 (2) 154-163
  • 7 Potocki L, Chen KS, Park SS , et al. Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat Genet 2000; 24 (1) 84-87
  • 8 Greenberg F, Guzzetta V, Montes de Oca-Luna R , et al. Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p11.2). Am J Hum Genet 1991; 49 (6) 1207-1218
  • 9 Zhang F, Potocki L, Sampson JB , et al. Identification of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS. Am J Hum Genet 2010; 86 (3) 462-470
  • 10 Lupski JR. Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ Mol Mutagen 2015; 56: 419-436
  • 11 Smith ACM, McGavran L, Waldstein G. Deletion of the 17 short arm in two patients with facial clefts and congenital heart disease. Am J Hum Genet 1982; 34 (Suppl): A410
  • 12 Greenberg F, Lewis RA, Potocki L , et al. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am J Med Genet 1996; 62 (3) 247-254
  • 13 Potocki L, Shaw CJ, Stankiewicz P, Lupski JR. Variability in clinical phenotype despite common chromosomal deletion in Smith-Magenis syndrome [del(17)(p11.2p11.2)]. Genet Med 2003; 5 (6) 430-434
  • 14 Edelman EA, Girirajan S, Finucane B , et al. Gender, genotype, and phenotype differences in Smith-Magenis syndrome: a meta-analysis of 105 cases. Clin Genet 2007; 71 (6) 540-550
  • 15 Chen RM, Lupski JR, Greenberg F, Lewis RA. Ophthalmic manifestations of Smith-Magenis syndrome. Ophthalmology 1996; 103 (7) 1084-1091
  • 16 Goldman AM, Potocki L, Walz K , et al. Epilepsy and chromosomal rearrangements in Smith-Magenis Syndrome [del(17)(p11.2p11.2)]. J Child Neurol 2006; 21 (2) 93-98
  • 17 Elsea SH, Girirajan S. Smith-Magenis syndrome. Eur J Hum Genet 2008; 16 (4) 412-421
  • 18 Lacaria M, Saha P, Potocki L , et al. A duplication CNV that conveys traits reciprocal to metabolic syndrome and protects against diet-induced obesity in mice and men. PLoS Genet 2012; 8 (5) e1002713
  • 19 Gropman AL, Duncan WC, Smith AC. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr Neurol 2006; 34 (5) 337-350
  • 20 Wolters PL, Gropman AL, Martin SC , et al. Neurodevelopment of children under 3 years of age with Smith-Magenis syndrome. Pediatr Neurol 2009; 41 (4) 250-258
  • 21 Madduri N, Peters SU, Voigt RG, Llorente AM, Lupski JR, Potocki L. Cognitive and adaptive behavior profiles in Smith-Magenis syndrome. J Dev Behav Pediatr 2006; 27 (3) 188-192
  • 22 Potocki L, Glaze D, Tan DX , et al. Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J Med Genet 2000; 37 (6) 428-433
  • 23 Gropman AL, Elsea S, Duncan Jr WC, Smith AC. New developments in Smith-Magenis syndrome (del 17p11.2). Curr Opin Neurol 2007; 20 (2) 125-134
  • 24 Dykens EM, Smith AC. Distinctiveness and correlates of maladaptive behaviour in children and adolescents with Smith-Magenis syndrome. J Intellect Disabil Res 1998; 42 (Pt 6) 481-489
  • 25 Finucane B, Dirrigl KH, Simon EW. Characterization of self-injurious behaviors in children and adults with Smith-Magenis syndrome. Am J Ment Retard 2001; 106 (1) 52-58
  • 26 Laje G, Morse R, Richter W, Ball J, Pao M, Smith AC. Autism spectrum features in Smith-Magenis syndrome. Am J Med Genet C Semin Med Genet 2010; 154C (4) 456-462
  • 27 Finucane BM, Konar D, Haas-Givler B, Kurtz MB, Scott Jr CI. The spasmodic upper-body squeeze: a characteristic behavior in Smith-Magenis syndrome. Dev Med Child Neurol 1994; 36 (1) 78-83
  • 28 De Leersnyder H, De Blois MC, Claustrat B , et al. Inversion of the circadian rhythm of melatonin in the Smith-Magenis syndrome. J Pediatr 2001; 139 (1) 111-116
  • 29 Boone PM, Reiter RJ, Glaze DG, Tan DX, Lupski JR, Potocki L. Abnormal circadian rhythm of melatonin in Smith-Magenis syndrome patients with RAI1 point mutations. Am J Med Genet A 2011; 155A (8) 2024-2027
  • 30 De Leersnyder H, de Blois MC, Vekemans M , et al. beta(1)-adrenergic antagonists improve sleep and behavioural disturbances in a circadian disorder, Smith-Magenis syndrome. J Med Genet 2001; 38 (9) 586-590
  • 31 De Leersnyder H. Inverted rhythm of melatonin secretion in Smith-Magenis syndrome: from symptoms to treatment. Trends Endocrinol Metab 2006; 17 (7) 291-298
  • 32 Poisson A, Nicolas A, Sanlaville D , et al. Smith-Magenis syndrome is an association of behavioral and sleep/wake circadian rhythm disorders [in French]. Arch Pediatr 2015; 22 (6) 638-645
  • 33 A Phase One Treatment Trial of the Circadian Sleep Disturbance in Smith-Magenis Syndrome (SMS) (NCT00506259). Clinical Trials.gov, 2007. Available at: https://clinicaltrials.gov/ct2/results?term=smith+magenis&Search=Search . Accessed June 1, 2015
  • 34 Capra V, Biancheri R, Morana G , et al. Periventricular nodular heterotopia in Smith-Magenis syndrome. Am J Med Genet A 2014; 164A (12) 3142-3147
  • 35 Maya I, Vinkler C, Konen O , et al. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome. Am J Med Genet A 2014; 164A (8) 1940-1946
  • 36 Smith AC, Gropman A, Smith-Magenis syndrome. In: Cassidy S, Allanson J. eds. Management of Genetic Syndromes, 3rd ed. New York, NY: Wiley-Blackwell; 2010: 739-767
  • 37 Zori RT, Lupski JR, Heju Z , et al. Clinical, cytogenetic, and molecular evidence for an infant with Smith-Magenis syndrome born from a mother having a mosaic 17p11.2p12 deletion. Am J Med Genet 1993; 47 (4) 504-511
  • 38 Juyal RC, Kuwano A, Kondo I, Zara F, Baldini A, Patel PI. Mosaicism for del(17)(p11.2p11.2) underlying the Smith-Magenis syndrome. Am J Med Genet 1996; 66 (2) 193-196
  • 39 Campbell IM, Yuan B, Robberecht C , et al. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet 2014; 95 (2) 173-182
  • 40 Feldman GM, Baumer JG, Sparkes RS. Brief clinical report: the dup(17p) syndrome. Am J Med Genet 1982; 11 (3) 299-304
  • 41 Magenis RE, Brown MG, Allen L, Reiss J. De novo partial duplication of 17p [dup(17)(p12----p11.2)]: clinical report. Am J Med Genet 1986; 24 (3) 415-420
  • 42 Kozma C, Meck JM, Loomis KJ, Galindo HC. De novo duplication of 17p [dup(17)(p12----p11.2)]: report of an additional case with confirmation of the cytogenetic, phenotypic, and developmental aspects. Am J Med Genet 1991; 41 (4) 446-450
  • 43 Brown A, Phelan MC, Patil S, Crawford E, Rogers RC, Schwartz C. Two patients with duplication of 17p11.2: the reciprocal of the Smith-Magenis syndrome deletion?. Am J Med Genet 1996; 63 (2) 373-377
  • 44 Potocki L, Bi W, Treadwell-Deering D , et al. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 2007; 80 (4) 633-649
  • 45 Nakamine A, Ouchanov L, Jiménez P , et al. Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay. Am J Med Genet A 2008; 146A (5) 636-643
  • 46 Gulhan Ercan-Sencicek A, Davis Wright NR, Frost SJ , et al. Searching for Potocki-Lupski syndrome phenotype: a patient with language impairment and no autism. Brain Dev 2012; 34 (8) 700-703
  • 47 Lee CG, Park SJ, Yim SY, Sohn YB. Clinical and cytogenetic features of a Potocki-Lupski syndrome with the shortest 0.25Mb microduplication in 17p11.2 including RAI1. Brain Dev 2013; 35 (7) 681-685
  • 48 Soler-Alfonso C, Motil KJ, Turk CL , et al. Potocki-Lupski syndrome: a microduplication syndrome associated with oropharyngeal dysphagia and failure to thrive. J Pediatr 2011; 158 (4) 655-659.e2
  • 49 Sanchez-Valle A, Pierpont ME, Potocki L. The severe end of the spectrum: hypoplastic left heart in Potocki-Lupski syndrome. Am J Med Genet A 2011; 155A (2) 363-366
  • 50 Yusupov R, Roberts AE, Lacro RV, Sandstrom M, Ligon AH. Potocki-Lupski syndrome: an inherited dup(17)(p11.2p11.2) with hypoplastic left heart. Am J Med Genet A 2011; 155A (2) 367-371
  • 51 Schmid M, Stary S, Blaicher W, Gollinger M, Husslein P, Streubel B. Prenatal genetic diagnosis using microarray analysis in fetuses with congenital heart defects. Prenat Diagn 2012; 32 (4) 376-382
  • 52 Treadwell-Deering DE, Powell MP, Potocki L. Cognitive and behavioral characterization of the Potocki-Lupski syndrome (duplication 17p11.2). J Dev Behav Pediatr 2010; 31 (2) 137-143
  • 53 Magoulas PL, Liu P, Gelowani V , et al. Inherited dup(17)(p11.2p11.2): expanding the phenotype of the Potocki-Lupski syndrome. Am J Med Genet A 2014; 164A (2) 500-504
  • 54 Jefferies JL, Pignatelli RH, Martinez HR , et al. Cardiovascular findings in duplication 17p11.2 syndrome. Genet Med 2012; 14 (1) 90-94
  • 55 Carmona-Mora P, Molina J, Encina CA, Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the Smith-Magenis and the Potocki-Lupski syndromes. Curr Genomics 2009; 10 (4) 259-268
  • 56 Walz K, Caratini-Rivera S, Bi W , et al. Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 2003; 23 (10) 3646-3655
  • 57 Bi W, Ohyama T, Nakamura H , et al. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith-Magenis syndrome. Hum Mol Genet 2005; 14 (8) 983-995
  • 58 Walz K, Paylor R, Yan J, Bi W, Lupski JR. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2). J Clin Invest 2006; 116 (11) 3035-3041
  • 59 Girirajan S, Elsea SH. Abnormal maternal behavior, altered sociability, and impaired serotonin metabolism in Rai1-transgenic mice. Mamm Genome 2009; 20 (4) 247-255
  • 60 Ricard G, Molina J, Chrast J , et al. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol 2010; 8 (11) e1000543
  • 61 Lacaria M, Gu W, Lupski JR. Circadian abnormalities in mouse models of Smith-Magenis syndrome: evidence for involvement of RAI1. Am J Med Genet A 2013; 161A (7) 1561-1568
  • 62 Walz K, Spencer C, Kaasik K, Lee CC, Lupski JR, Paylor R. Behavioral characterization of mouse models for Smith-Magenis syndrome and dup(17)(p11.2p11.2). Hum Mol Genet 2004; 13 (4) 367-378
  • 63 Lacaria M, Spencer C, Gu W, Paylor R, Lupski JR. Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits. Hum Mol Genet 2012; 21 (14) 3083-3096
  • 64 Carmona-Mora P, Walz K. Retinoic acid induced 1, RAI1: a dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Curr Genomics 2010; 11 (8) 607-617
  • 65 Cao L, Molina J, Abad C , et al. Correct developmental expression level of Rai1 in forebrain neurons is required for control of body weight, activity levels and learning and memory. Hum Mol Genet 2014; 23 (7) 1771-1782
  • 66 Wu N, Ming X, Xiao J , et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med 2015; 372 (4) 341-350