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Nonalcoholic fatty liver disease (NAFLD) encompasses a
spectrum of liver disease ranging from simple steatosis
(hepatic triglyceride content [HTGC] > 5%), through stea-
tohepatitis (fat plus inflammation and hepatocellular bal-
looning degeneration; NASH), to fibrosis and ultimately
cirrhosis, in the absence of excessive alcohol consumption
(a threshold of < 20 g/d for women and < 30 g/d for men is
typically adopted).1 Nonalcoholic fatty liver disease is
strongly associated with features of the metabolic syn-
drome including abdominal obesity, insulin resistance or
type 2 diabetes mellitus (T2DM) and atherogenic dyslipi-
daemia.2,3 Over the past few decades, lifestyles have be-
come increasingly sedentary and dietary patterns have
changed, leading to an increased prevalence of obesity
and insulin resistance.3 Against this background, NAFLD
has rapidly become the most common cause of abnormal
liver biochemistry in many countries and is predicted to be
the most common indication for liver transplantation
within a decade.4–6

The prevalence of NAFLD and its natural history are
reviewed elsewhere in this issue.7 A substantial proportion
of the population are at risk of progressive NAFLD due to the
presence of obesity and insulin resistance. However, it is
apparent that only a minority progress to more advanced
disease characterized by NASH, advanced fibrosis, and hepa-
tocellular carcinoma (HCC).3 Indeed, studies in cohorts of
patients that have undergone serial liver biopsies indicate
that approximately 40% of NAFLD cases will develop progres-
sive liver fibrosis while the remaining 60% exhibit stable
disease or some degree of regression during long-term
follow-up.8,9 Rates of fibrosis progression are also nonuni-
form, with some individuals progressing more rapidly than
others.8,9 It should also be noted that liver-related mortality
occurs in < 5% of NAFLD patients and is the third most
common cause of death after cardiovascular disease and
extrahepatic malignancy.10

The reasons for these variations remain incompletely
understood, but NAFLD is best considered a complex disease
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Abstract Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum that spans simple
steatosis, through nonalcoholic steatohepatitis (NASH) to fibrosis and ultimately
cirrhosis. Nonalcoholic fatty liver disease is characterized by substantial interpatient
variation in rate of progression and disease outcome: Although up to 25% of the general
population are at risk of progressive disease, only a minority experience associated liver-
related morbidity. Nonalcoholic fatty liver disease is considered a complex disease trait
that occurs when environmental exposures act upon a susceptible polygenic back-
ground composed of multiple independent modifiers. Recent advances include the
identification of PNPLA3 as a modifier of disease outcome across the full spectrum of
NAFLD from steatosis to advanced fibrosis and hepatocellular carcinoma; and the
discovery of TM6SF2 as a potential “master regulator” of metabolic syndrome outcome,
determining not only risk of advanced liver disease, but also cardiovascular disease
outcomes. In this article, the authors will review the field, discussing in detail the current
status of research into these important genetic modifiers of NAFLD progression.
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trait where subtle interpatient variations including host
genetic factors and environment interact to produce disease
phenotype anddetermine disease progression.11–13Although
the presence of NAFLD is principally determined by environ-
mental factors, it is clear that genetic factors contribute and
crucially determine how individuals respond to the challenge
of calorific excess and consequent metabolic stressors. Al-
though much work remains to be done, substantial progress
in our understanding of genetic modifiers has been made.
Herewewill summarize the latest developments sincewe last
reviewed the field, in particular focusing on the PNPLA3 and
TM6SF2 genes.13,14

Evidence Indicative of a Genetic Component
to NAFLD

Susceptibility to high-prevalence diseases such as obesity,
T2DM, cardiovascular disease, and NAFLD comprises a
heritable component variously accounting for up to 30 to
50% of relative risk.15 These complex traits result from
environmental exposures acting on a susceptible polygenic
background made up of multiple independent modi-
fiers.15,16 Three strands of evidence suggest that there is
a significant heritable component to NAFLD: familial ag-
gregation,17–19 twin studies,20 and interethnic differences
in susceptibility.21–25 Although socioeconomic factors can
confound analysis of interethnic differences, variations in
population prevalence of genetic variants such as the
PNPLA3 rs738409 polymorphism do seem to contribute
to this variability.26

Identifying Genetic Modifiers of NAFLD

The allelic frequencyof susceptibility loci in common diseases
remains a contentious subject.27–29 Most studies are founded
on the pre-eminent “common disease/common variant”
(CD/CV) hypothesis.16,28 Broadly, common diseases are of
late onset, and so have little impact on reproductive fitness.
Therefore, causative mutations are not subject to negative
selection pressures, and disease susceptibility is due to the
combined effects of multiple relatively common causative
polymorphisms (minor allele frequency 1–5%) that are car-
ried by affected individuals.28 Discussion of the relative
merits of this and the competing “multiple rare-variant”
hypothesis is outside the scope of this review, but are
discussed elsewhere. Although one cannot accurately predict
the allelic effect-size distribution in NAFLD, it is likely that the
majority of modifier loci will each individually have only a
small effect, although a minority may have greater effect.28

This seems consistent with evidence from genome-wide
association studies (GWASs) in other conditions showing
that disease-associated allelic variation is frequently noncod-
ing and perturbs gene expression or exon splicing; subtle
changes that in general havemodest functional consequences
compared with the much less common nonsynonymous
coding sequence alterations.28,30 Supporting this, the major-
ity of published association studies report allele relative risk
ratios of 1.1 to 1.5.30–32

As no single gene is sufficient to determine outcome, clear
patterns of inheritance are not seen within kinships and so
family-basedgene linkage studies lack the necessary power to
detect genetic variants as each individually confers only a
modest effect.15,16

Hypothesis-Driven Candidate-Gene Association
Studies
The principal approach to the study of complex disease traits
such as NAFLD has been the case-control disease-association
study. These genetic association studies assess correlations
between genetic variants and trait differences on a popula-
tion scale and so have greater power to detect effect.33

However, selection of candidate genes is founded on an
assumed biologically plausible pathogenic role for the en-
coded protein. As these studies are reliant on there being a
valid a priori hypotheses for gene selection, candidates are
drawn from the limited pool of genes where biological
function is already understood and considered relevant to
the disease.33,34 These studies are therefore unlikely to
identify a role for genes that were not already implicated.
As will be discussed below, candidate-gene studies have only
identified a small number of genes that are robustly and
reproducibly associated with NAFLD.

Hypothesis Generation by Genome-Wide Association
Studies
Patterns of association among single nucleotide polymor-
phisms (SNPs) throughout the genome may be characterized
in terms of both linkage disequilibrium (LD; correlation
between nearby variants on the same chromosome such
that alleles are nonrandomly associated) and haplotype
(a combination of alleles at multiple linked loci on a chromo-
some that are transmitted together).35 The use of tag SNPs to
serve as proxies for other SNPs that are in strong LD, allowed
development of genotyping arrays that simultaneously test
> 1million different polymorphisms. These arrays permit the
profiling of the majority of common (minor allele frequency
[MAF] > 5%) variability in the human genome.35–37

Genome-wide association studies have led to the identifi-
cation of novel genes contributing to several important dis-
eases.34,35 However, due to the nonhypothesis-driven nature
of GWAS, the loci identified are frequently novel and would
not otherwise have been linked to NAFLD. A corollary of this is
that neither biological function nor pathogenic mechanisms
are necessarily apparent and so additional study, both to
confirm causality and elucidate the pathogenic mechanisms,
is required. It is also apparent that a substantial proportion of
disease heritability remains elusive and so GWASs are not a
panacea.32 The failure to achieve universal success in the
study of complex diseases is in part because of the complexity
of the phenotypes studied and difficulty in establishing
sufficiently large, well-characterized patient cohorts. The
latter is especially relevant to NAFLD where histologically
characterized patients are required to assess modifiers of
steatohepatitis and fibrosis. Current arrays do not yet capture
rare variants with more modest effect size (MAF < 0.5%), nor
are they effective at assessing disease associations with
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structural polymorphisms such as copy number variants,
insertions, deletions, and inversions.32,35

GWASs by Phenotype and Chronology

At the time of writing, several genome-scale studies
for NAFLD have been reported (summarized
in ►Table 1).26,38–44 These can be divided into three groups
based on disease phenotype studied: (1) radiologically mea-
sured steatosis (HTGC), (2) histologically characterized NAFLD,
and (3) clinical biochemistry phenotypes.

Radiologically Determined Steatosis-Based GWASs
The first GWAS in NAFLD, published in 2008,26 was of
relatively modest size by current standards. It examined
9,229 nonsynonymous SNPs in a North American population
of diverse ethnicity (Hispanic, African American, and
European ancestry) from the Dallas Heart Study.26,45 Hepatic
triacylglycerol (TAG) accumulation was measured using non-
invasive proton magnetic resonance spectroscopy (1H-MRS).
This study identified a single highly significant association
between increased HTGC and the patatin-like phospholipase
domain-containing 3 (PNPLA3) gene.26 The index single
nucleotide polymorphism (SNP) in PNPLA3 (rs738409 c.444
C > G, p.I148M) is a nonsynonymous cytosine to guanine
nucleotide transversionmutation that results in an isoleucine
tomethionine amino acid change at codon 148. A gene dosage
effect for I148M carriage was observed with a stepwise
increase in HTGC with increasing carriage of the minor allele
and homozygotes I148M carriage being associated with a
twofold increase in HTGC. As alluded to earlier, minor-allele
frequency correlated with ethnic differences in susceptibility
to greater HTGC. 148M was most common in Hispanics (MAF
0.49), lower in those of European ancestry (0.23) and lowest
in African Americans (0.17). Although less well characterized,
this study also identified a second nonsynonymous SNP in
PNPLA3 (rs6006460, p.S453I) that was associated with re-
duced HTGC and had the opposite ethnic distribution.26,46

The two SNPs in combination accounted for 72% of the ethnic
variation in HTGC in the population studied.

In their later study, Speliotes et al employed a two-stage
approach.39 The initial exploratory meta-analysis of data from
four cohorts (Age/Gene/Environment Susceptibility-Reykjavik
Study, Old Order Amish Study, Family Heart Study, and Fra-
mingham Heart Study) using 2.4 million SNPs imputed to
HapMap in 7,176 individuals of European ancestry remains the
largest GWAS meta-analysis for NAFLD to date.39 Adopting a
permissive significance threshold (p < 10�3), SNPs associated
with HTGC were identified and then taken forward in a
separate cohort of 592 patients with histologically character-
ized NAFLD as a candidate gene study. Variants located in or
near PNPLA3 (rs738408), protein phosphatase 1, glucokinase
regulator (GCKR; rs780094), regulatory (inhibitor) subunit
3B (PPP1R3B; rs4240624), and lysophospholipase-like 1
(LYPLAL1; rs12137855) were identified. In addition, a variant
in the NCAN gene (rs2228603 c.274 C > T, p.Pro92Ser) in a
region of chromosome 19 (19p13.11) was also associated with
increased HTGC.39 PNPLA3, GCKR, LYPLAL1, and NCAN (the

19p13.11 region), but not PPP1R3B were validated for histo-
logical steatosis, and additionally associated with lobular
inflammation and/or fibrosis. In addition, variants in or near
NCAN, GCKR, and PPP1R3Bwere associated with altered serum
lipid levels and variants near GCKR and PPP1R3B affected
glycemic traits. The rs738408 SNP in PNPLA3 identified in
this study is in strong LD with rs738409, previously described
by Romeo et al.26

Although further study of each highlighted gene is still
warranted to explore the associated pathogenic mechanisms,
most were biologically plausible. GCKR encodes a regulator of
carbohydrate metabolism and so is also highly relevant to
NAFLD pathogenesis despite the precise causative variants
within the gene remaining ill defined. LYPLAL1 encodes a
protein involved in triglyceride breakdown and so is likely to
be relevant. Avariant in PPP1R3B (rs2126259), which encodes
the catalytic subunit of protein phosphatase-1 and so may
influencehepatic glycogen synthesis, has sincebeenvalidated
for HTGC in another GWAS.42 These contrast with the
19p13.11 locus where attention had focused on the NCAN
gene that contained the rs2228603 SNP. Although the associ-
ation was subsequently validated in a separate cohort,47

NCAN lacked biologically plausible evidence of a functional
role in NAFLD while nearby genes had previously been
associated with variations in plasma triglyceride and low-
density lipoprotein levels and so were more likely candi-
dates.48,49 Careful inspection of the LD patterns around
rs2228603 and the 19p13.11 region suggested that the vari-
ant was in strong LD with a cluster of other SNPs up to 400 kb
distant and so tagged > 20 other genes (►Fig. 1). This led us
to question whether NCAN was indeed the causative gene.14

Clarification on this point was provided by a subsequent
GWAS based on a genome-wide exome chip in 2,736 individ-
uals drawn from the same North American population as the
original Romeo study.43 In addition to again validating the
association between PNPLA3 and NAFLD, Kozlitina et al
determined that a nonsynonymous genetic variant within a
gene of unknown function called TM6SF2, transmembrane 6
superfamily member 2 (rs58542926 c.449 C > T, p.Glu167Lys)
at the 19p13.11 locus was associatedwith 1H-MRS quantified
HTGC.43 Homozygote TM6SF2 rs58542926 minor (T) allele
carriage was shown to be associated with a modest, but
statistically significant increase in 1H-MRS measured HTGC
from 5.86 � 0.25% in CC homozygotes to 15.04 � 2.23% in TT
homozygotes.43 This TM6SF2 variant is in strong linkage
disequilibrium with other SNPs around the 19p13.11 locus,
including the rs2228603 SNP previously identified by Spe-
liotes et al.39 Crucially, conditional analyses demonstrated
that TM6SF2 rs58542926, notNCAN rs2228603was the causal
variant driving the association with HTGC at this locus.43,50

Histologically Characterized NAFLD-Based GWASs
Reflecting the difficulty establishing large patient cohorts
that are characterized using invasive tests such as liver
biopsy, most histologically based GWASs published to date
have used relatively small cohorts. Four histologically
based GWASs have been published to date. It is notable
that these have not been as productive in terms of robustly
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identifying new genetic modifiers as the radiologically
based studies.

Chalasani et al reported the first histologically based
GWAS in 236 female NAFLD patients.38 This study did not
report associations with individual components of the histo-
logical NAFLD activity score51 such as steatosis; ballooning
degeneration or portal inflammation Higher overall NAFLD
activity scores were associated with a variant in the farnesyl
diphosphate farnesyl transferase 1 (FDFT1, rs2645424), an
enzymewith a role in cholesterol biosynthesis in a multivari-
ate analysis adjusting for age, diabetes, HbA1c level, body
mass index [BMI], and waist:hip ratio. Additional loci were
associatedwith fibrosis (rs343062) and lobular inflammation
(including rs1227756 in the COL13A1 gene). PNPLA3 was not
associated with any aspect of the NAFLD phenotype in this
study and the FDFT1 association was not replicated in a
subsequent study using a cohort of 340 NAFLD.52 Although
the associations detected in this study are potentially inter-
esting, they require further independent validation in larger
patient cohorts.

Two Japanese histologically based studies have been pub-
lished.41,53 The first, by Kawaguchi et al,41 examined 484,751
SNPs in a cohort of 529 patients with biopsy-proven NAFLD
characterized according to the Matteoni classification54 and
932 population controls. The second study by Kitamoto et al53

initially examined 261,540 SNPs in a cohort of 392 NAFLD
patients and 934 population controls and then validated their
findings in a cohort of 172 patients and 1,012 controls. Both
studies confirmed the association between NAFLD and SNPs
flanking the PNPLA3 gene in this ethnically distinct popula-
tion, but identified no novel signals. Another study in 2,300

obese individuals again provided strong evidence of an
association with PNPLA3 and identified a locus neighboring
TM6SF2, both linked to a steatosis phenotype.44

Clinical Chemistry-Based GWASs
It is accepted that liver biochemistry correlates poorly with the
presence of NAFLD or disease severity55,56 so that biochemical
screening consistently reports a lower disease prevalence
(3–12%) than imaging or histology-based studies.57 Accepting
these limitations, two GWASs have identified genes that
influence plasma levels of alanine transaminase (ALT).58,59

The first of these studies found that PNPLA3 I148M was
associated with raised serum ALT levels in populations of
European and Indian-Asian descent.58A region spanning three
genes on chromosome 10, APN1-ERLIN1-CHUK (rs11597390,
rs11591741, rs11597086) that was also highlighted in this
study58 has since been associated with radiological steatosis
and ALT levels in a GWAS-correlated meta-analysis, which
flagged variants in ERLIN1-CHUK-CWF19L1.42 The second of
the two studies identified 42 loci at genome-wide significance
levels (p < 1 � 10�8) in a cohort of 61,089 individuals.59 Four
loci were associated with elevations in ALT: rs6834314 near
HSD17B13 andMAPK10; rs2954021near TRIB1 (a gene that has
previously been associated with variations in plasma choles-
terol and triglyceride levels48,60,61); rs10883437 near CPN1;
and PNPLA3 rs738409.59

The Chromosome 22 Locus: PNPLA3

Across all GWASs it is noteworthy that only two genes
(PNPLA3 and TM6SF2) have been identified as potential

Fig. 1 Linkage disequilibrium patterns in the chromosome 19 (19p13.11) region flanking TM6SF2. Visualization of the 19p13.11 region flanking
the rs58542926 TM6SF2 SNP (red diamond) based on 1000 genome data analyzed in SNAP.189 Strong linkage disequilibrium (LD) with a cluster of
variants up to�400 kb distant is demonstrated. Neighboring genes associated with relevant phenotypes in other studies (including NCAN, SUGP1
(SF4), CILP2, PBX4, and GMIP) are likely to have been due to the LD effect across the 19p13.11 region.
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modifiers in more than one study (►Fig. 2). Following its
association with steatosis in the first reported NAFLD GWAS,
there has remained considerable interest in the role of the
PNPLA3 gene on chromosome 22 as a modifier of NAFLD
pathogenesis. This association has now been independently
replicated in numerous candidate-gene studies examining
both adult62–66 and pediatric66–69 NAFLD cohorts across
differing ethnicities, as has the association with raised ALT/
aspartate aminotransferase (AST) levels.70 There is also evi-
dence from histologically based studies that the rs738409
(I148M) variant is associated with severity of steatohepatitis
and greater fibrosis.62,64,66 It has also been associated with
greater response to dietary or lifestyle modification and so
may be a marker of both greater risk and also greater benefit
from intervention.71,72

The rise in the burden of NAFLD coincides with a marked
increase in the incidence of HCC in many countries,73–76 and
so it is timely to also consider whether geneticmodifiers such
as PNPLA3 may also increase the risk of NAFLD-associated
HCC. The I148M variant has been associated with increased
HCC risk in a mixed-etiology cohort,77 the morbidly obese,78

alcohol-related liver disease,79–82 and more variably, in
chronic viral hepatitis.79,80,82–84 This association is supported
by a meta-analysis85 but is best demonstrated by a recent
European study, where in a multivariate analysis adjusted for
age, gender, diabetes, BMI, and presence of cirrhosis, carriage
of each copy of the rs738409 minor (G) allele conferred an
additive risk for HCC (adjusted odds ratio [OR] ¼ 2.26, 95%
confidence interval [CI] ¼ 1.23–4.14], p ¼ 0.0082), with GG
homozygotes exhibiting a fivefold (adjusted OR ¼ 5.05, 95%
CI ¼ 1.47–17.29, p ¼ 0.01) increased risk over CC homozy-
gotes.86 In this study, comparison of genotype frequencies
between the NAFLD-HCC cohort and an unselected United
Kingdom (UK) general population sample (the MRC/Well-
come Trust UK 1958 Birth Cohort) identified a 12-fold in-
creased risk of HCC (OR ¼ 12.19, 95% CI ¼ 6.89–21.58,
p < 0.0001) for rs738409 minor (G) allele homozygotes rela-
tive to C-allele homozygotes.86 These findings have led some
to suggest that PNPLA3-associated HCC approaches mono-
genic inheritance.87Wewould caution against amove toward
considering “PNPLA3-associated NAFLD,” or by extension
“PNPLA3-associated HCC,” as distinct, monogenic conditions,

but based on a reanalysis of the data from Liu et al86 to assess
sensitivity/specificity agree that there may be value in the
PNPLA3 genotyping to select out those individuals least likely
to develop HCC and therefore least likely to benefit from
surveillance given the very high negative predictive value.88

Further studies to determine the utility and health-economic
merits of a multifactorial risk stratification that incorporates
PNPLA3 rs738409 genotype along with other recognized risk
factors for HCC are warranted.

The Challenge of Determining the Mechanistic Effects
of PNPLA3 Variants
The PNPLA3 gene encodes a 481 amino acid protein that is
structurally related to the principal TG hydrolase in adipose
tissue, adipose triglyceride lipase (ATGL/PNPLA2).46,89 PNPLA3
differs from classical lipases in possessing a catalytic dyad
(S47/D166) rather than the more usual triad.90 Although the
site of the I148M variant does not lie within this highly
conserved catalytic site, the I148M amino acid substitution
affects the hydrophobic substrate-binding groove and somay
prevent substrate access to the catalytic site.91

It is accepted that the modifier effect of PNPLA3 on the
degree of hepatic steatosis is not due to a direct change in
insulin sensitivity when assessed either by hyperinsulinemic,
euglycemic clamp63,65 or plasma insulin response to oral
glucose tolerance testing.92 Furthermore, it does not alter
the overall severity of the metabolic syndrome or confer a
greater BMI, degree of dyslipidemia or prevalence of overt
T2DM.93 Current evidence suggests that the effects are more
subtle, and that carriage of the PNPLA3 variation sensitizes
the liver to metabolic stress due to nutritional calorific excess
and adiposity, which is consistent with the concept of NASH
as a complex disease trait. Thus, carriage of the I148M variant
is associated with a greater degree of steatosis for any given
degree of insulin resistance or adiposity. This concept is
supported by the fact that I148M carriage is more strongly
associated with raised AST/ALT in the presence of obesity.92

Despite the strong genetic evidence, the physiological role
of PNPLA3 and how this is perturbed by carriage of the I148M
polymorphism is still incompletely understood. The structur-
al changes affecting the catalytic site described above are
consistent with the results of studies examining recombinant
adiponutrin expressed in HUH-7 cells and the in vitro bio-
chemical actions of purified PNPLA3.91,94 These demonstrate
that PNPLA3 hydrolyses acylyglycerols with maximal hydro-
lytic activity observed against the three major glycerolipids,
triacylglycerol (TG), diacylglycerol, and monoacylglycerol,
with a strong preference for oleic acid as the acyl moiety;
and that the I148M polymorphism is associated with sub-
stantially reduced enzymatic activity without reducing sub-
strate affinity.91,94 Stable isotope tracer studies in 55
overweight/obese men and in vitro studies using rat McA-
RH7777 cells that secrete ApoB-containing very-low-density
lipoprotein- (VLDL-) like particles demonstrate that carriage
of the I148M variant reduces VLDL secretion, an effect that
may be indicative of a failure tomobilize TG from intracellular
lipid droplets due to loss of TG hydrolase activity.95 However,
this is contentious as other groups have proposed that

Fig. 2 Commonality between the largest genome-wide association
studies (GWASs) in nonalcoholic fatty liver disease (NAFLD). There is
surprisingly little commonality in genes identified in GWASs examining
aspects of the NAFLD phenotype. Currently, only two genes (PNPLA3
and TM6SF2) have been identified in more than one study.
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PNPLA3 may also possess lysophosphatidic acid acetyltrans-
ferase (LPAAT) activity that is enhanced by I148M, increasing
TG synthesis.96,97

Interspecies differences in gene expression pattern have
complicated in vivo mechanistic studies. PNPLA3 is expressed
primarily in liver and adipose tissue, where it partitions to
membranes and lipid droplets.91 However, hepatic expression
is highest in man,98,99 whereas adipose tissue expression is
highest in mice.100,101 Moreover, the two species only share
approximately 68% PNPLA3 homology. Hepatic PNPLA3 ex-
pression is increased after feeding, reduced by fasting,46,101

and is also raised in obesity.63,101 Insulin controls postprandial
PNPLA3 expression through LXR/RXR and the transcription
factor SREBP-1c.98 Significantly, additional posttranslational
control influenced by the constituents of the fatty acid milieu
has also been described.98 The presence of specific saturated
(palmitate, C16:0), monounsaturated (oleate, C18:1) and poly-
unsaturated fatty acids (linoleic acid, C18:2) increased adipo-
nutrin expression although very long chain fatty acids (e.g.,
arachidonic acid, C20:4 and eicosapentaenoic acid, C20:5)
were not found to effect expression.98

Reconciling the apparently conflicting findings of the in
vivo experiments with the in vitro studies has proved chal-
lenging (►Table 2). Although the initial in vitro datawasmost
consistent with a loss-of-function effect of the I148M poly-
morphism, deletion of Pnpla3 did not provoke hepatic TG
accumulation, even when mice were fed a high-sucrose
diet.102,103 Adenoviral mediated overexpression of wild-
type human PNPLA3 was also unable to provoke steatosis;
however, overexpression of the PNPLA3 I148M variant did
cause steatosis.91 More recently, studies have shown that
neither hepatic nor adipose tissue overexpression of wild-
type PNPLA3 promotes hepatic TG accumulation. Hepatic
overexpression of the I148Mvariant formdid, however, cause
TG accumulation.104 Importantly, three distinct metabolic
effects were observed: increased synthesis of fatty acids
and TG, impaired TG hydrolysis, and relative depletion of
TG long chain polyunsaturated fatty acids.104 Taken together,
these data support the view that PNPLA3 acts to remodel TG
in lipid droplets as they accumulate in the fed-state and that
I148Maffectsmultiple facets of this process. Furthermore, the
apparent mixed enzymatic actions, coupled with the tran-
scriptional regulation of PNPLA3 by feeding and the specific
fatty acid profile suggests that the action of PNPLA3may vary
somewhat according to tissue and metabolic milieu. It is
noteworthy that in this study hepatic overexpression of the
I148M variant led to increased hepatic TG, but no associated
changes in TNFα, α-smooth muscle actin or collagen type 1α
mRNA expression were seen, providing no evidence that
either inflammatory or fibrotic processes were active.104

In an attempt to address the concerns that overexpression
of human PNPLA3 I148M in mice may not have physiological
fidelity, a recent study by Smagris et al used homologous
recombination to introduce the Pnpla3 I148M variant (or a
complete loss of functionmutation that distorted the catalytic
dyad, S47A) in mice while preserving normal physiological
regulation of gene expression.105 Consistent with the concept
that the I148M variant sensitizes the liver to metabolic stress

due to nutritional calorific excess and adiposity, a two to
threefold increase in hepatic TG accumulationwas seenwhen
mice were fed high sucrose diet (but not standard chow),
although these effects were not associatedwith an increase in
ALT or circulating lipid levels.105 Interestingly, Pnpla3 I148M
was not associated with any changes in hepatic Srebp-1c
expression or the expression profiles of its target genes,
and once again no changes in TNFα, α-smooth muscle actin,
or collagen type 1αmRNA expression were observed. A novel
finding in this study was that hepatic TG accumulation in the
knockinmicewas accompanied by a 40-fold increase in either
catalytically inactive PNPLA3 variant (I148M or S47A) on the
surface of hepatic lipid droplets. This study is of significance
as it reconciles the apparent disparity between the in vitro
data suggesting a predominant loss-of-function effect of
I148M91,94,95 and the in vivo data where Pnpla3 knockout
mice did not develop a NAFLD phenotype.102,103 The I148M
variant confers a dominant-negative effect and so for the
variant to drive NAFLD pathogenesis the presence of catalyti-
cally inactive PNPLA3 protein is necessary, not simply a
complete absence of PNPLA3 activity.105

While representing a substantial advance in our under-
standing of disease pathogenesis, the work by Li et al104 and
Smagris et al105 underline the fact that further research is
required to clarify how PNPLA3 drives not-only hepatic lipid
accumulation, but also NAFLD progression to steatohepatitis,
fibrosis, and hepatocellular carcinoma, where no clear mech-
anisms havebeen identified as yet. Addressing this point, only
one study has offered any evidence of mechanistic link
between PNPLA3 activity and hepatic fibrosis.106 In that
study, Pirazzi et al demonstrated that PNPLA3 is highly
expressed in human hepatic stellate cells (HSCs) that purified
wild-type PNPLA3 hydrolyzes retinyl palmitate into retinol
and palmitic acid and that this enzymatic activity is markedly
reduced by the I148M variant.106 These findings suggest a
potential link between HSCs, retinoid metabolism, and
PNPLA3 in determining the susceptibility to hepatic fibrosis
although no evidence that the observed effects altered HSC
activationwas provided and so further study is needed before
this mechanism can be established as relevant.

The Chromosome 19 Locus: TM6SF2

The controversy regarding the causative gene within the
19p13.11 locus that was initially ascribed to NCAN has now
largely been resolved. Kozlitina et al demonstrated that a non-
synonymous genetic variant within TM6SF2 (rs58542926 c.449
C > T, p.Glu167Lys) was associated with 1H-MRS quantified
HTGC.43 This SNP lies within 50 kb of the NCAN gene variant
(rs2228603) that had previously been associated with
HTGC.39,47 Although both SNPs are in strong linkage disequilib-
rium (D’ ¼ 0.926, r2 ¼ 0.798), conditioning on the TM6SF2
variant abrogated the effect of the NCAN variant while the
reverse did not occur, establishing that TM6SF2 rs58542926 is
more strongly associated with the HTGC phenotype.43 In vitro
and in vivo functional studies have provided further support for
this conclusion, but did not provide evidence demonstrating
whether the effect of TM6SF2was limited to hepatic steatosis or
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whether it had broader clinical relevance, modifying the risk of
steatohepatitis or fibrosis as has been shown for PNPLA3.43

Candidate gene studies addressed the effect of the TM6SF2
rs58542926 variant on presence of steatohepatitis and severity
of NAFLD-associated hepatic fibrosis/cirrhosis. The first such
study, in a cohort of > 1,000 histologically characterized Euro-
peanCaucasianpatients demonstrated that carriage of each copy
of the E167K variant was associated with a near twofold
increased risk of advanced fibrosis (OR ¼ 1.88 [1.41–2.5] per
copy of the minor allele carried), independent of confounding
factors including age, diabetes, obesity, or PNPLA3 genotype.50

This association has since been independently validated in
another large European cohort.107 Two studies, including one
from China, have failed to replicate the association,108,109 al-
though an association with NAFLD has been demonstrated in
another Chinese population.110 These two negative results may
in part be due to the generally low minor allele frequency of
TM6SF2 rs58542926 and interethnic variations in its carriage. A
minor allele frequency of 0.07 in Europeans, 0.04 in Hispanics,
and 0.02 in African Americans has been reported,111 meaning
that the effect of the NAFLD promoting TM6SF2 allele will be
more apparent in individuals of European ancestry than His-
panic or African ancestry. Inadequate statistical power to detect
an effect on histological markers of disease progression coupled
with a cohort exhibiting predominantly mild disease were
contributory flaws in the small South American study.109 This
study contained only 226 NAFLD cases with histologically
characterized disease of which 96 had simple steatosis and
the remaining 130 exhibited only minimally active disease
with little fibrosis (mean fibrosis stage of 1.4 out of 4). Con-
clusions drawn from this low quality study are questionable and
are likely to represent type 2 error. Thus, the modifier role
exerted by TM6SF2 rs58542926 (E167K) at the 19p13.11 locus
has been robustly demonstrated across several large indepen-
dent cohorts for NAFLD phenotypes ranging from steatosis to
advanced fibrosis/cirrhosis.39,43,50,107,110,112

The Mechanistic Effects of TM6SF2 Variants
Little is known of the precise protein structure or functional
role of the TM6SF2 gene product beyond that it is a multipass
membrane protein.113 Based on the analysis of coexpressed
gene profiles in the Mouse Genome Informatics (MGI) data-
base, TM6SF2 is predicted to function as a lipid transporter
and may interact with proteins involved in intestinal absorp-
tion.114 The TM6SF2 rs58542926 (E167K) missense mutation
maps to an exposed nontransmembrane domain. Its effects
appear to extend beyond liver disease alone. Using confocal
microscopy, investigators observed localization of GFP-
tagged TM6SF2 to the endoplasmic reticulum and ER-Golgi
intermediate compartments (ERGIC) in two human hepato-
ma cell lines.112 In a series of elegant in vitro experiments
they also found that knockdown of TM6SF2 reduced secretion
of triglyceride-rich lipoproteins and APOB. This led to in-
creased cellular triglyceride accumulation, which at the sub-
cellular level, manifested as amarked increase in lipid droplet
number and average size. Conversely, overexpression of
TM6SF2 caused a decrease in the number and average size
of lipid droplets.112Ta
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A GWAS seeking modifiers of serum lipid levels and cardio-
vascular disease risk published around the same time as the
studies linking TM6SF2 E167K with NAFLD supports these
findings.115 Holmen et al provided evidence that carriage of
the more common TM6SF2 rs58542926 major allele was associ-
ated with dyslipidemia (raised serum LDL cholesterol and
triglyceride) and increasedmyocardial infarction/cardiovascular
disease risk while minor allele carriage was protective.115 This
findingwas also consistentwith several earlier reports regarding
the 19p13.11 locus that had variously implicated the nearby
genes NCAN, PBX4, and GMIP with dyslipidemia, associations
that may probably now be ascribed to TM6SF2.39,48,49 The
association of TM6SF2 with dyslipidemia and atherosclerosis
risk in humans was validated by another study examining two
separate groups (a NAFLD patient cohort and an obese popula-
tion cohort). Patientswith NAFLD that carried the E167K variant
encoding the minor allele were found to have a lower risk of
developing carotid plaques (OR ¼ 0.49, 95% CI ¼ 0.25–0.94)
while E167K carriers among a group of 1,819 obese individuals
had significantly lower serum lipid levels and a lower incidence
of cardiovascular events (hazard ratio ¼ 0.61; 95% CI ¼ 0.39–
0.95).107 As demonstrated in a study examining 300 Finnish
subjects, the effects of TM6SF2 on HTGC and circulating lipid
profiles are mediated without inducing greater hepatic insulin
resistance.116 Indeed, theeffects of insulinonglucoseproduction
and lipolysis were significantly higher in carriers of the TM6SF2
E167K variant than in wild-type subjects.116 The most recent
GWAS, addressing the impactof low-frequencyand rarevariants
on lipid levels, examined 9.6 million genetic variants achieved
through 1,000 Genomes Project imputation in 62,166 sam-
ples.114 Here, two variants within TM6SF2 were identified that
together explained theentire19p13.11 regional associationwith

lipid levels (TC, LDL-C, and TG). These variants were rs58542926
(E167K) and a second, less common, missense mutation located
in the fifth transmembrane domain (rs1874290064, L156P).114

Further support for the parallel effects of TM6SF2 on
NAFLD pathogenesis and hepatic lipid handling is provided
by a series of in vivo studies observing the effects of altered
gene expression in mice. Overexpression of humanwild-type
TM6SF2 in liver resulted in higher total cholesterol (TC), low-
density lipoprotein (LDL) cholesterol, triglycerides (TGs), and
lower high-density lipoprotein (HDL) cholesterol, whereas
knockdown of mouse Tm6sf2 in liver resulted in decreased
serum TC.115 Knock down of mouse Tm6sf2 in vivo also
resulted in increased hepatic lipid accumulation and a reduc-
tion in serum TG, LDL, and VLDL secretion.43 Taken together,
these in vivo43,115 and in vitro43,112,115 functional studies
suggest that TM6SF2 controls hepatic lipid efflux, with its
deletion or mutation resulting in a reduction in lipoprotein
secretion (VLDL, TG, and APOB) coincident with increased
hepatocellular lipid droplet size and TG accumulation. Be-
cause the E167K variant results in lower TC in humans and
expression levels of the E167K protein is lower than thewild-
type form, these data further indicate that the E167K variant
confers a loss of function to the protein that may be both
qualitative and quantitative.43,115

TM6SF2 and Cardiovascular Disease: The “Catch-22”
Paradigm
Based on available evidence, we recently described the
“TM6SF2 Catch-22” paradigm.117 Here, on a background of
insulin resistance and metabolic stress, TM6SF2 acts as a
determinant of metabolic syndrome-related end-organ dam-
age and thus clinical outcome: protecting the liver at the

Fig. 3 The ”TM6SF2 Catch-22.” On a background of insulin resistance and metabolic stress, TM6SF2 acts as a determinant of metabolic syndrome
related end-organ damage and thus clinical outcome: Protecting the liver at the expense of increased risk of atherosclerosis and cardiovascular
disease or vice versa. LDL, low-density lipoprotein; T2DM, type 2 diabetes mellitus; TG, triglyceride; VLDL, very low-density lipoprotein. (Modified
from Kahali B, Liu YL, Daly AK, Day CP, Anstee QM, Speliotes EK. TM6SF2: catch-22 in the fight against nonalcoholic fatty liver disease and
cardiovascular disease? Gastroenterology 2015;148(4):679–684117 with permission.)
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expense of increased risk of atherosclerosis and cardiovascular
disease or vice versa (►Fig. 3).117 It is widely accepted that
NAFLD is associated with cardiovascular disease, indeed the
majority of patients with NAFLD will ultimately die a cardio-
vascular rather than a liver-related death.3,10,57 However,
these conditions can be dissociated: Individuals carrying the
minor (T) allele of TM6SF2 rs58542926 (167K) appear prone to
developing NAFLD with advanced fibrosis and so are more
likely to experience liver-related rather than cardiovascular
morbidity and mortality.43,50,107 Conversely, carriage of the C-
allele is associated with dyslipidemia and cardiovascular dis-
ease.107,115 As yet, it remains unclear if the effects of TM6SF2
variants are sufficient to eclipse the many environmental and
other genetic factors that determine disease outcome at an
individual level, and so merit inclusion of genotype testing
within a stratified medicine approach. Nevertheless, further
study of this and other NAFLD-associated human genetic
variants will greatly inform our understanding of the patho-
physiology and interrelationship between NAFLD and its
associated metabolic traits.

Other Genetic Modifiers in NAFLD

The current understanding of disease pathogenesis has been
achieved through both clinical research and the translational
study of specific animalmodels.12 It is generally accepted that
the initiating events in NAFLD are dependent on the devel-
opment of obesity and insulin resistance.3 Together, these
produce an increased free fatty acid (FFA) fluxwithin the liver
which in turn places hepatocytes under considerable meta-
bolic load and promotes hepatocyte lipotoxicity, increased
oxidative stress secondary to free radicals produced during β-
and ω-FFA oxidation, and endoplasmic reticulum stress.
Hepatocellular TAG accumulation (steatosis) is a histological-
ly apparent epiphenomenon reflecting these metabolic
changes and is best considered an early adaptive response
through which potentially lipotoxic FFAs are partitioned into
relatively stable intracellular TAG stores.118 Ultimately, these
insults combine with the additive effects of endotoxin/TLR4
induced Kupffer cell cytokine release and immune mediated
hepatocellular injury to induce cellular damage and activate
cell death pathways, marking the transition to steatohepati-
tis.119–121 If these processes persist stellate cell activation,
collagen deposition and hepatic fibrosis occur.122

Potential genetic modifiers therefore fall into four broad
categories: (1) those that influence glucose metabolism and
insulin sensitivity; (2) those that perturb the handling of fatty
acids and the accumulation of TAG in the liver; (3) those that
determine progression to NASH (for example, modifiers of
oxidative stress, endotoxin response or cytokine and adipokine
activity); and (4) those that might influence hepatic fibrogen-
esis.13Drawing on the results of the GWAS discussed earlier and
the numerous candidate gene studies that have been reported,
►Table 3 summarizes the genes that have been associated with
aspects of theNAFLDphenotype according to this schema. These
are discussed in depth in our previous reviews of thefield.13,14 It
should be remembered, however, that only a minority of the

genes that have been associated with NAFLD either in GWAS or
through candidate-gene analysis have been independently vali-
dated and can be considered of proven importance. Indeed, if
only those genes that have been robustly validated in large
independent studies or through the use of transmission disequi-
librium testing123 are considered, the list only includes patatin-
like phospholipase domain-containing 3 (PNPLA3),26,62–66

transmembrane 6 superfamily member 2 (TM6SF2),43,50,107

mitochondrial superoxide dismutase 2 (SOD2),124,125 phospha-
tidylethanolamine N-methyltransferase (PEMT),126,127 fatty acid
desaturase 1 (FADS1)128 and Kruppel-like factor-6 (KLF6).129,130

Conclusions

Nonalcoholic fatty liver disease is a complex disease in which
subtle interpatient genetic variations and environmental
factors interact to determine disease phenotype and progres-
sion. The relative importance of these factors will vary
between populations depending on background modifier
genes, lifestyle choices/challenges, and other factors such as
the intestinal microbiome. Beyond identifying associations, it
is important to understand the mechanisms through which
these variations exert effects and to translate these findings
into clinical utility where possible.
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