Synlett 2016; 27(17): 2485-2488
DOI: 10.1055/s-0035-1562517
letter
© Georg Thieme Verlag Stuttgart · New York

Hydrogen Peroxide Promoted Metal-Free Oxidation/Cyclization of α-Hydroxy N-Arylamides: A Facile One-Pot Synthesis of Isatins

Jie Li
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: wyong@scu.edu.cn
,
Xu Cheng
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: wyong@scu.edu.cn
,
Xiaojun Ma
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: wyong@scu.edu.cn
,
Guanghui Lv
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: wyong@scu.edu.cn
,
Zhen Zhan
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: wyong@scu.edu.cn
,
Mei Guan*
b   West China Hospital, Sichuan University, No. 37. GuoXue road, Chengdu 610041, P. R. of China   Email: meiguan92@163.com
,
Yong Wu*
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: wyong@scu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 27 May 2016

Accepted after revision: 23 June 2016

Publication Date:
25 July 2016 (online)


Abstract

A novel, efficient, and environmentally friendly method was developed for converting α-hydroxy N-arylamides into isatins (1H-indole-2,3-diones) by using hydrogen peroxide as oxidant. The reactions proceeded smoothly under metal-free conditions and generated the corresponding products in good to excellent yields. This method has advantages of a broad substrate scope and simple operations.

Supporting Information

 
  • References and Notes

    • 1a Zhang Y, Li ZJ, Xu HS, Zhang Y, Wang W. RSC Adv. 2011; 1: 389
    • 1b Wei W.-T, Chen C.-X, Lu R.-J, Wang J.-J, Zhang X.-J, Yan M. Org. Biomol. Chem. 2012; 10: 5245
    • 1c Dandia A, Parewa V, Jain AK, Rathore KS. Green Chem. 2011; 13: 2135
    • 1d Arya AK, Kumar M. Green Chem. 2011; 13: 1332
    • 1e Jiang B, Wang X, Xu H.-W, Tu M.-S, Tu SJ, Li G. Org. Lett. 2013; 15: 1540
    • 1f Pakravan P, Kashanian S, Khodaei MM, Harding FJ. Pharmacol. Rep. 2013; 65: 313
    • 1g Chaudhary DK, Ahmad S, Maity S, Alam MS. Pharm. Lett. 2013; 5 (01) 285 ; http://scholarsresearchlibrary.com/dpl-vol5-iss1/DPL-2013-5-1-285-295.pdf
  • 2 Chu W, Rothfuss J, Zhou D, Mach RH. Bioorg. Med. Chem. Lett. 2011; 21: 2192
  • 3 Modi NR, Shah RJ, Patel MJ, Suthar M, Chauhan BF, Patel L. Med. Chem. Res. 2011; 20: 615 ; DOI: 10.1007/s00044-010-9361-y
  • 4 Bridges TM, Kennedy JP, Hopkins CR, Conn PJ, Lindsley CW. Bioorg. Med. Chem. Lett. 2010; 20: 5617
  • 5 Siddiqui N, Alam MS, Stables JP. Eur. J. Med. Chem. 2011; 46: 2236
    • 6a Garden SJ, da Silva RD, Pinto AC. Tetrahedron 2002; 58: 8399
    • 6b Toullec PY, Jagt RB. C, de Vries JG, Feringa BL, Minnaard AJ. Org. Lett. 2006; 8: 2715
    • 6c Shintani R, Inoue M, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 3353; Angew. Chem. 2006, 118, 3431
    • 6d Mohammadi S, Heiran R, Herrera RP, Marqués-López E. ChemCatChem 2013; 5: 2131
    • 7a Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 7b Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 8a Laurent A. Ann. Chim. Phys. 1840; 3[2]: 393
    • 8b Erdmann OL. J. Prakt. Chem. 1840; 19: 321
    • 9a Guyot A, Martinet J. C. R. Hebd. Seances Acad. Sci. 1913; 166: 1625
    • 9b Martinet J. C. R. Hebd. Seances Acad. Sci. 1918; 166: 851
    • 9c Bonnefoy J, Martinet J. C. R. Hebd. Seances Acad. Sci. 1921; 172: 220
    • 10a Stollé R. J. Prakt. Chem. 1922; 106: 137
    • 10b Stollé R. Ber. Dtsch. Chem. Ges. 1913; 46: 3915
    • 11a Sandmeyer T. Helv. Chim. Acta 1919; 2: 234
    • 11b Prinz W, Kayle A, Levy PR. J. Chem. Res., Synop. 1978; 168
    • 11c Pinto AC, Moreira Lapis AA, Vasconcellos da Silva B, Bastos RS, Dupont J, Neto BA. D. Tetrahedron Lett. 2008; 49: 5639
  • 12 Rogness DC, Larock RC. J. Org. Chem. 2011; 76: 4980
    • 13a Klein LL, Tufano MD. Tetrahedron Lett. 2013; 54: 1008
    • 13b Chouhan M, Senwar KR, Sharma R, Grover V, Nair VA. Green Chem. 2011; 13: 2553
    • 14a Tang B.-X, Song R.-J, Wu C.-Y, Liu Y, Zhou M.-B, Wei W.-T, Deng G.-B, Yin D.-L, Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
    • 14b Sun J, Liu B, Xu B. RSC Adv. 2013; 3: 5824
    • 14c Liu T, Yang H, Jiang Y, Fu H. Adv. Synth. Catal. 2013; 355: 1169
    • 14d Liu Y, Chen H, Hu X, Zhou W, Deng GJ. Eur. J. Org. Chem. 2013; 4229
  • 15 Lollar CT, Krenek KM, Bruemmer KJ, Lippert AR. Org. Biomol. Chem. 2014; 12: 406
  • 16 Huang PC, Gandeepan P, Cheng C.-H. Chem. Commun. 2013; 49: 8540
  • 17 Satish G, Polu A, Ramar T, Ilangovan A. J. Org. Chem. 2015; 80: 5167
  • 18 Yue Q, Wang Y, Hai L, Guo L, Yin H, Wu Y. Synlett 2016; 27: 1292
    • 19a Zhan Z, Cheng X, Ma XJ, Li J, Hai L, Wu Y. Tetrahedron 2015; 71: 6928
    • 19b Ye Y, Lee S, Sanford MS. Org. Lett. 2011; 13: 5464
  • 20 N-Methylisatin (2a); Typical Procedure A mixture of α-hydroxy amide 1a (152.2 mg, 1.0 mmol) and 30% aq H2O2 (0.68 g, 6.0 mmol, 0.61 mL) was added to DMSO (2 mL), and the mixture was stirred under air at 100 °C for 3 h. When the reaction was complete (TLC), the mixture was cooled to r.t., diluted with H2O, and extracted with EtOAc (3 × 10 mL). The organic layer was washed with sat. brine, dried (Na2SO4), and evaporated to dryness. The crude residue was purified by flash chromatography [silica gel, PE–EtOAc (10:1)] to give a red solid; yield: 143.3 mg (0.89 mmol, 89%); mp 130–133 °C. 1H NMR (400 MHz, CDCl3): δ = 7.64–7.58 (m, 2 H), 7.15–7.11 (m, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 3.26 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 183.3, 158.1, 151.4, 138.4, 125.1, 123.8, 117.3, 109.9, 26.2. HRMS (ESI): m/z [M + Na+] calcd for C9H7NNaO2: 184.0374; found: 184.0370.