Synlett 2016; 27(17): 2451-2454
DOI: 10.1055/s-0035-1562485
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient One-Pot Synthesis of Mono- and Bis[di(2-pyridyl)phosphine Oxides] from Tris(2-pyridyl)phosphine

Svetlana F. Malysheva
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Nina K. Gusarova
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Nataliya A. Belogorlova
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Anastasiya O. Sutyrina
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Yuriy I. Litvintsev
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Alexander I. Albanov
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Irina V. Sterkhova
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
,
Alexander V. Artem’ev*
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: chemisufarm@yandex.ru
› Author Affiliations
Further Information

Publication History

Received: 07 May 2016

Accepted after revision: 29 June 2016

Publication Date:
25 July 2016 (online)


Abstract

An efficient one-pot access to di(2-pyridyl)phosphine oxides Py2P(R)=O and bis[di(2-pyridyl)phosphine oxides] Py2P(O)–Z–P(O)Py2 has been developed based on the reaction of available tris(2-pyridyl)phosphine with various organic halides, followed by treatment of the resulting phosphonium salts with alkali in situ. The isolated yields of the phosphine oxides were in the range 40–96%.

Supporting Information

 
  • References and Notes

    • 1a Szczepura LF, Witham LM, Takeuchi KJ. Coord. Chem. Rev. 1998; 174: 5
    • 1b Espinet P, Soulantica K. Coord. Chem. Rev. 1999; 193–195: 499
    • 1c Vats BG, Kannan S, Parvathi K, Maity DK, Drew MG. B. Polyhedron 2015; 89: 116
    • 1d Hettstedt C. Ph.D. Thesis. Ludwig-Maximilians-Universität München: Germany, 2015; https://edoc.ub.uni-muenchen.de/ 18403/1/Hettstedt_Christina.pdf
    • 1e Dubován L, Pöllnitz A, Silvestru C. Eur. J. Inorg. Chem. 2016; 1521

      For recent works, see:
    • 2a Walden AG, Miller AJ. M. Chem. Sci. 2015; 6: 2405
    • 2b Artem’ev AV, Gusarova NK, Malysheva SF, Belogorlova NA, Kazheva ON, Alexandrov GG, Dyachenko OA, Trofimov BA. Mendeleev Commun. 2015; 25: 196
    • 2c Gneuß T, Leitl MJ, Finger LH, Rau N, Yersin H, Sundermeyer J. Dalton Trans. 2015; 44: 8506
    • 2d Artem’ev AV, Gusarova NK, Shagun VA, Malysheva SF, Smirnov VI, Borodina TN, Trofimov BA. Polyhedron 2015; 90: 1
    • 3a Tsuboyama A, Ishii T, Katsuako H. JP 2013112608, 2013 ; Chem. Abstr. 2013, 159, 84234
    • 3b Tsuboyama A, Ishii T, Katsuako H. JP 2013095688, 2013 ; Chem. Abstr. 2013, 158, 720398
    • 4a Kathirgamanathan P, Bushby LM, Price RD. WO 2003014256, 2003 ; Chem. Abstr. 2003, 138, 195600
    • 4b Akiyama S, Yokoo T, Murase T, Miyano C. JP 2009023914, 2009 ; Chem. Abstr. 2009, 150, 202473
    • 5a Casares JA, Espinet P, Martínez-Ilarduya JM, Lin Y.-S. Organometallics 1997; 16: 770
    • 5b Aránzazu Alonso M, Casares JA, Espinet P, Martínez-Ilarduya JM, Pérez-Briso C. Eur. J. Inorg. Chem. 1998; 1745
    • 5c Bartolomé C, Espinet P, Martín-Alvarez JM, Villafañe F. Eur. J. Inorg. Chem. 2003; 3127
    • 5d Bartolomé C, Espinet P, Martín-Alvarez JM, Villafañe F. Eur. J. Inorg. Chem. 2004; 2326
    • 5e Bartolomé C, de Blas R, Espinet P, Martín-Alvarez JM, Villafañe F. J. Organomet. Chem. 2006; 691: 3862
  • 6 Casares JA, Espinet P, Martín-Alvarez JM, Espino G, Pérez-Manrique M, Vattier F. Eur. J. Inorg. Chem. 2001; 289
    • 7a Casares JA, Espinet P, Hernando R, Iturbe G, Villafañe F, Ellis DD, Orpen AG. Inorg. Chem. 1997; 36: 44
    • 7b Espinet P, Hernando R, Iturbe G, Villafañe F, Orpen AG, Pascual I. Eur. J. Inorg. Chem. 2000; 1031
  • 8 Hasegawa Y, Nakanishi T. RSC Adv. 2015; 5: 338
  • 9 Xie Y, Lee C.-L, Yang Y, Rettig SJ, James BR. Can. J. Chem. 1992; 70: 751
  • 10 Zhang T, Qin Y, Wu D, Zhou R, Yi X, Liu C. Synth. Commun. 2005; 35: 1889
  • 11 Arbuzova SN, Gusarova NK, Glotova TE, Ushakov IA, Verkhoturova SI, Korocheva AO, Trofimov BA. Eur. J. Org. Chem. 2014; 639
    • 12a Trofimov BA, Artem’ev AV, Malysheva SF, Gusarova NK, Belogorlova NA, Korocheva AO, Gatilov YuV, Mamatyuk VI. Tetrahedron Lett. 2012; 53: 2424
    • 12b Trofimov BA, Gusarova NK, Artem’ev AV, Malysheva SF, Belogorlova NA, Korocheva AO, Kazheva ON, Alexandrov GG, Dyachenko OA. Mendeleev Commun. 2012; 22: 187
  • 13 Phosphine Oxides 3af; General Procedure A mixture of tris(2-pyridyl)phosphine (1; 133 mg, 0.5 mmol) and the appropriate organic halide (5.0 mmol) was stirred at 24–140 °C for 0.5–1.5 h (see Table 1). When the reaction was complete (31P NMR), the mixture was cooled to 20–25 °C and powdered KОН·0.5 H2O (36 mg, 0.55 mmol) was added. The mixture was stirred for another 30 min at this temperature until the 31P NMR resonance from the phosphonium salts 2ag disappeared. CHCl3 (5 mL) was then added to the resulting mixture, the undissolved residue was removed by filtration, and the filtrate was concentrated. The residue was mixed with anhyd Et2O (3 mL) and the mixture was filtered. The volatiles were evaporated from the filtrate and the residue was dried in vacuo (1 Torr). Methylbis(2-pyridyl)phosphine Oxide (3a) Yellow-brown oil; yield: 105 mg (96%). FT-IR (film): 3048, 2992, 2918, 2854, 1661, 1575, 1455, 1426, 1292, 1197, 1133, 1084, 1045, 990, 885, 761, 706, 618, 513 cm–1. 1H NMR (400.13 MHz, CDCl3): δ = 2.20 (d, 2 J PH = 13.6 Hz, 3 H, Me), 7.34–7.38 (m, 2 H, H-3 in Py), 7.76–7.81 (m, 2 H, H-4 in Py), 8.04–8.07 (m, 2 H, H-5 in Py), 8.77 (d, 3 J 6–5 = 4.5 Hz, 2 H, H-6 in Py). 13C NMR (100.62 MHz, CDCl3): δ = 13.57 (d, 2 J PC = 76.6 Hz, Me), 125.42 (d, 4 J PC = 1.9 Hz C-5 in Py), 127.12 (d, 2 J PC = 19.8 Hz, C-3 in Py), 136.11 (d, 3 J PC = 8.5 Hz, C-4 in Py), 150.33 (d, 3 J PC = 19.1 Hz, C-6 in Py), 156.55 (d, 1 J PC = 127.6 Hz, C-2 in Py). 31P NMR (161.98 MHz, CDCl3): δ = 32.28; Anal. Calcd for C11H11N2OP: С, 60.55; Н, 5.08; N, 12.84. Found: С, 60.47; Н, 5.16; N, 12.65.
  • 14 Detailed experimental protocols for the synthesis of all new compounds and the corresponding spectroscopic data are provided in the Supporting Information.
  • 15 Bowen RJ, Fernandes MA, Gitari PW, Layh M. Phosphorus, Sulfur Silicon Relat. Elem. 2006; 181: 1403
  • 16 Details of this X-ray analysis are provided in the Supporting Information. CCDC 1477937 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.