Synlett 2016; 27(13): 2029-2033
DOI: 10.1055/s-0035-1562432
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Trifluoromethyl-Substituted Ethyl Picolinate Derivatives by the Cobalt-Catalyzed Regioselective Intermolecular [2+2+2] Cycloaddition

Tomoki Ishikawa
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Taro Sonehara
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Shogo Murakami
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Maki Minakawa
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
,
Motoi Kawatsura*
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan   Email: kawatsur@chs.nihon-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 23 April 2016

Accepted after revision: 09 May 2016

Publication Date:
14 June 2016 (online)


Abstract

We demonstrated the intermolecular [2+2+2] cycloaddition of aryl- and trifluoromethyl-substituted internal alkyne and ethyl cyano­formate, and succeeded in constructing the pyridine derivatives using the CoI2/dcype/Zn catalyst system. The reaction proceeded with a high regioselectivity, and two trifluoromethyl-substituted ethyl picolinate derivatives were obtained as a single regioisomer.

Supporting Information

 
  • References and Notes

    • 1a Bönnemann H. Angew. Chem., Int. Ed. Engl. 1985; 24: 248
    • 1b Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 1c Henry GD. Tetrahedron 2004; 60: 6043
    • 1d Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 1e Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 1f Varela JA, Saá C. Synlett 2008; 2571
    • 1g Galan BR, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
    • 1h Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 1i Weding N, Hapke M. Chem. Soc. Rev. 2011; 40: 4525
    • 1j Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639
    • 1k Tanaka K. Heterocycles 2012; 85: 1017
    • 1l Okamoto S, Sugiyama Y. Synlett 2013; 24: 1044
    • 2a Varela JA, Castedo L, Saá S. J. Am. Chem. Soc. 1998; 120: 12147
    • 2b Naiman A, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1977; 16: 708
    • 2c Brien DJ, Naiman A, Vollhardt KP. C. J. Chem. Soc., Chem. Commun. 1982; 133
    • 2d Parnell C, Vollhardt KP. C. Tetrahedron 1985; 24: 5791
    • 2e Varela JA, Castedo L, Saá C. J. Am. Chem. Soc. 1998; 120: 12147
    • 2f Moretto AF, Zhang H.-C, Maryanoff BE. J. Am. Chem. Soc. 2001; 123: 3157
    • 2g Boñaga LV. R, Zhang H.-C, Moretto AF, Ye H, Gauthier DA, Li J, Leo GC, Maryanoff BE. J. Am. Chem. Soc. 2005; 127: 3473
    • 2h Young DD, Deiters A. Angew. Chem. Int. Ed. 2007; 46: 5187
    • 2i Chang H.-T, Jeganmohan M, Cheng C.-H. Org. Lett. 2007; 9: 505
    • 2j Kase K, Goswami A, Ohtaki K, Tanabe E, Saino N, Okamoto S. Org. Lett. 2007; 9: 931
    • 2k Geny A, Agenet N, Iannazzo L, Malacria M, Aubert C, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810
    • 2l Garcia P, Moulin S, Miclo Y, Leboeuf D, Gandon V, Aubert C, Malacria M. Chem. Eur. J. 2009; 15: 2129
    • 2m Mclver AL, Deiters A. Org. Lett. 2010; 12: 1288
    • 2n Hapke M, Kral K, Fischer C, Spannenberg A, Gutnov A, Redkin D, Heller B. J. Org. Chem. 2010; 75: 3993
    • 2o Hapke M, Weding N, Spannenberg A. Organometallics 2010; 29: 4298
    • 2p Garcia P, Evanno Y, George P, Sevrin M, Ricci G, Malacria M, Aubert C, Gandon V. Org. Lett. 2011; 13: 2030
    • 2q Zou Y, Liu Q, Deiters A. Org. Lett. 2011; 13: 4352
    • 2r Swami A, Ramana CV. Synlett 2015; 26: 604
    • 3a Nishida G, Suzuki N, Noguchi K, Tanaka K. Org. Lett. 2006; 8: 3489
    • 3b Tanaka K, Hara H, Nishida G, Hirano M. Org. Lett. 2007; 9: 1907
    • 3c Komine Y, Kamisawa A, Tanaka K. Org. Lett. 2009; 11: 2361
    • 3d Shibata T, Uchiyama T, Endo K. Org. Lett. 2009; 11: 3906
    • 3e Konno T, Moriyasu K, Kinugawa R, Ishihara T. Org. Biomol. Chem. 2010; 8: 1718
    • 3f Neely JM, Rovis T. J. Am. Chem. Soc. 2013; 135: 66
    • 3g Haraburda E, Lledó A, Roglans A, Pla-Quintana A. Org. Lett. 2015; 17: 2882
    • 3h Xu F, Wang C, Wang H, Li X, Wan B. Green Chem. 2015; 17: 799
    • 3i Kashima K, Ishii M, Tanaka K. Eur. J. Org. Chem. 2015; 1092
    • 4a D’Souza BR, Lane TK, Louie J. Org. Lett. 2011; 13: 2936
    • 4b Richard V, Ipouck M, Mérel DS, Gaillard S, Whitby RJ, Witulski B, Renaud J.-L. Chem. Commun. 2014; 50: 593
    • 5a Yamamoto Y, Ogawa R, Itoh K. J. Am. Chem. Soc. 2001; 123: 6189
    • 5b Yamamoto Y, Okuda S, Itoh K. Chem. Commun. 2001; 1102
    • 5c Yamamoto Y, Kinpara K, Ogawa R, Nishiyama H, Itoh K. Chem. Eur. J. 2006; 12: 5618
    • 5d Medina S, Domínguez G, Pérez-Castells J. Org. Lett. 2012; 14: 4982
  • 6 Onodera G, Shimizu Y, Kimura J, Kobayashi J, Ebihara Y, Kondo K, Sakata K, Takeuchi R. J. Am. Chem. Soc. 2012; 134: 10515
    • 7a Tekavec TN, Zuo G, Simon K, Louie J. J. Org. Chem. 2006; 71: 5834
    • 7b Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
    • 7c Stolley RM, Duong HA, Louie J. Organometallics 2013; 32: 4952
    • 8a Varela JA, Castedo L, Saá C. J. Org. Chem. 2003; 68: 8595
    • 8b Yamamoto Y, Kinpara K, Saigoku T, Takagishi H, Okuda S, Nishiyama H, Itoh K. J. Am. Chem. Soc. 2005; 127: 605
    • 9a McCormick MM, Duong HA, Zuo G, Louie J. J. Am. Chem. Soc. 2005; 127: 5030
    • 9b Hoshimoto Y, Ohata T, Ohashi M, Ogoshi S. Chem. Eur. J. 2014; 20: 4105
    • 9c Zhong Y, Spahn NA, Stolley RM, Nguyen MH, Louie J. Synlett 2015; 26: 307
    • 10a Wakatsuki Y, Yamazaki H. Tetrahedron Lett. 1973; 36: 3383
    • 10b Bönnemann H, Brinkmann R, Schenkluhn H. Synthesis 1974; 575
    • 10c Bönnemann H, Brinkmann R. Synthesis 1975; 600
    • 10d Wakatsuki Y, Yamazaki H. J. Chem. Soc., Dalton Trans. 1978; 1278
    • 10e Jeller B, Sundermann B, Fischer C, You J, Chen W, Drexler H.-J, Knochel P, Bonrath W, Gutnov A. J. Org. Chem. 2003; 68: 9221
    • 10f Senaiar RS, Young DD, Deiters A. Chem. Commun. 2006; 1313
    • 10g Young DD, Teske JA, Deiters A. Synthesis 2009; 3785
    • 11a Cioni P, Diversi P, Ingrosso G, Lucherini A, Ronca P. J. Mol. Catal. 1987; 40: 337
    • 11b Diversi P, Ingrosso G, Lucherini A, Minutillo A. J. Mol. Catal. 1987; 40: 359
    • 11c Pietro D, Ermini L, Ingrosso G, Lucherini A. J. Organomet. Chem. 1993; 447: 291
    • 11d Costa M, Dias FS, Chiusoli GP, Gazzola GL. J. Organomet. Chem. 1995; 488: 47
    • 11e Costa M, Dalcanale E, Dias FS, Graiff C, Tiripicchio A, Bigliardi L. J. Organomet. Chem. 2001; 619: 179
    • 11f Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
    • 11g Komine Y, Tanaka K. Org. Lett. 2010; 12: 1312
    • 12a Wang C, Li X, Wu F, Wan B. Angew. Chem. Int. Ed. 2011; 50: 7162
    • 12b Lane TK, D’Souza BR, Louie J. J. Org. Chem. 2012; 77: 7555
    • 12c Wang C, Wang D, Xu F, Pan B, Wan B. J. Org. Chem. 2013; 78: 3065
  • 13 Satoh Y, Obora Y. J. Org. Chem. 2013; 78: 7771
    • 14a Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 14b Bégué J.-P, Bonnet-Delpon D. J. Fluorine Chem. 2006; 127: 992
    • 14c Lirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 14d Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 14e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 14f Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 14g Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 15a Kawatsura M, Wada S, Hayase S, Itoh T. Synlett 2006; 2483
    • 15b Kawatsura M, Hirakawa T, Tanaka T, Ikeda D, Hayase S, Itoh T. Tetrahedron Lett. 2008; 49: 2450
    • 15c Hirakawa T, Ikeda K, Ogasa H, Kawatsura M, Itoh T. Synlett 2010; 2887
    • 15d Kawatsura M, Namioka J, Kajita K, Yamamoto M, Tsuji H, Ioth T. Org. Lett. 2011; 13: 3285
    • 15e Hirakawa T, Ikeda K, Ikeda D, Tanaka T, Ogasa H, Kawatsura M, Itoh T. Tetrahedron 2011; 67: 8238
    • 15f Kawatsura M, Terasaki S, Minakawa M, Hirakawa T, Ikeda K, Itoh T. Org. Lett. 2014; 16: 2442
    • 15g Isa K, Minakawa M, Kawatsura M. Chem. Commun. 2015; 51: 6761
    • 15h Ishikawa T, Sonehara T, Minakawa M, Kawatsura M. Org. Lett. 2016; 18: 1422
    • 15i Ikeda K, Futamura T, Hanakawa T, Minakawa M, Kawatsura M. Org. Biomol. Chem. 2016; 14: 3501
    • 16a Kawatsura M, Yamamoto M, Namioka J, Kajita K, Hirakawa T, Itoh T. Org. Lett. 2011; 13: 1001
    • 16b Minakawa M, Ishikawa T, Namioka J, Hirooka S, Zhou B, Kawatsura M. RSC Adv. 2014; 4: 41353
    • 17a Konno T, Chae J, Kanda M, Nagai G, Tamura K, Ishihara T, Yamanaka H. Tetrahedron 2003; 59: 7571
    • 17b Konno T. Synlett 2014; 25: 1350
    • 17c Sakaguchi Y, Nakazaki Y, Moriyasu K, Konno T. J. Fluorine Chem. 2015; 179: 64
    • 17d Müller C, Lachicotte RJ, Jones WD. Organometallics 2002; 21: 1975
  • 18 The reaction provided detectable amount of benzene derivative, which was formed by the trimerization of 1a, as a side product.
  • 19 General Procedure for the Cobalt-Catalyzed [2+2+2] Cycloaddition of Aryl- and Trifluoromethyl-Substituted Internal Alkynes 1 and Ethyl Cyanoformate (2) A typical procedure is given for the reaction of 1-(4-methoxyphenyl)-3,3,3-trifluoropropyne (1a) with ethyl cyanoformate (2, Table 1, entry 14). CoI2 (19 mg, 0.061 mmol) and dcype (51 mg, 0.121 mmol) were suspended in 0.6 mL of THF, and the mixture was stirred at room temperature for 5 min. Alkyne 1a (121 mg, 0.605 mmol), ethyl cyanoformate (2, 30 mg, 0.303 mmol), and Zn powder (24 mg, 0.367 mmol) were added to the reaction mixture, then stirred at 60 °C for 16 h. The reaction mixture was diluted with EtOAc, and the mixture was passed through a pad of silica gel and Florisil, then the filtrate was concentrated in vacuo. The NMR yield (C6H5CF3 as an internal standard) was determined to be 94% yield. The residue was chromatographed on silica gel (hexane–Et2O, 7:3) to give 139 mg (92%) of 3a as a white solid; mp 151–153 °C. 1H NMR (500 MHz, CDCl3): δ = 1.44 (t, J = 6.3 Hz, 3 H), 2.26 (s, 6 H), 4.52 (q, J = 6.3 Hz, 2 H), 6.81 (d, J = 6.3 Hz, 4 H), 6.97 (d, J = 6.3 Hz, 4 H). 13C NMR (125 Hz, CDCl3): δ = 13.9, 55.1, 63.0, 113.0, 120.2 (q, J CF = 277.1 Hz), 122.3 (q, J CF = 275.9 Hz), 124.7, 124.8 (q, J CF = 29.6 Hz), 126.2, 130.1, 130.9, 139.1, 148.0 (q, J CF = 33.4 Hz), 148.7, 154.0, 159.2, 159.3, 165.3. 19F NMR (470 MHz, CDCl3): δ = 99.8 (s, 3 F), 107.7 (s, 3 F). IR (KBr): 2969, 2941, 2841, 1757, 1611, 1519, 1031, 626, 552 cm–1. ESI-HRMS: m/z calcd for C24H20F6NO4 [M + H]+: 500.1291; found: 500.1320
  • 20 We recovered unreacted 1k and 1l in 75% NMR yield and 86% NMR yield, respectively. These results suggest that the coordination of alkynes to cobalt or formation of the cobaltcyclopentadiene (complex I in Scheme 1) is very slow.