Synthesis 2017; 49(01): 202-208
DOI: 10.1055/s-0035-1562381
paper
© Georg Thieme Verlag Stuttgart · New York

Hydroxyl-Assisted trans-Reduction of 1,3-Enynes: Application to the Formal Synthesis of (+)-Aspicilin

Sebastian Schaubach
a   Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
,
Kenichi Michigami
a   Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
b   Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan   Email: fuerstner@kofo.mpg.de
,
Alois Fürstner*
a   Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
› Author Affiliations
Further Information

Publication History

Received: 21 June 2016

Accepted: 21 June 2016

Publication Date:
04 July 2016 (online)


Dedicated to Prof. Dieter Enders on the occasion of his 70th birthday

Abstract

1,3-Enynes are hardly amenable to trans-hydrometalation reactions, because they tend to bind the standard ruthenium catalysts too tightly. However, catalysts comprising a [Cp*Ru–Cl] unit allow such compounds to be used, provided they contain an OH group next to the triple bond. This aspect is illustrated by a formal synthesis of the lichen-derived macrolide aspicilin. The required macrocyclic enyne precursor was formed by an efficient ring-closing alkyne metathesis reaction.

Supporting Information

 
  • References

  • 1 Huneck S, Schreiber K, Steglich W. Tetrahedron 1973; 29: 3687
  • 2 Quinkert G, Heim N, Bats JW, Oschkinat H, Kessler H. Angew. Chem., Int. Ed. Engl. 1985; 24: 987
  • 3 Hesse O. J. Prakt. Chem. 1900; 62: 430
    • 4a Quinkert G, Heim N, Glenneberg J, Billhardt U.-M, Autze V, Bats JW, Dürner G. Angew. Chem., Int. Ed. Engl. 1987; 26: 362
    • 4b Quinkert G, Heim N, Glenneberg J, Döller U, Eichhorn M, Billhardt U.-M, Schwarz C, Zimmermann G, Bats JW, Dürner G. Helv. Chim. Acta 1988; 71: 1719
    • 5a Sinha SC, Keinan E. J. Org. Chem. 1994; 59: 949
    • 5b Sinha SC, Keinan E. J. Org. Chem. 1997; 62: 377
  • 6 Oppolzer W, Radinov RN, de Brabander J. Tetrahedron Lett. 1995; 36: 2607
  • 7 Enders D, Prokopenko OF. Liebigs Ann. Chem. 1995; 1185
  • 8 Kobayashi Y, Nakano M, Okui H. Tetrahedron Lett. 1997; 38: 8883
  • 9 Nishioka T, Iwabuchi Y, Irie H, Hatakeyama S. Tetrahedron Lett. 1998; 39: 5597
  • 10 Maezaki N, Li Y.-X, Ohkubo K, Goda S, Iwata C, Tanaka T. Tetrahedron 2000; 56: 4405
  • 11 Dixon DJ, Foster AC, Ley SV. Org. Lett. 2000; 2: 123
  • 12 Banwell MG, McRae KJ. Org. Lett. 2000; 2: 3583
  • 13 Raghavan S, Sreekanth T. Tetrahedron Lett. 2006; 47: 5595
  • 14 Dubost C, Markó IE, Ryckmans T. Org. Lett. 2006; 8: 5137
  • 15 Yadav JS, Rao TS, Ravindar K, Reddy BV. S. Synlett 2009; 2828
  • 16 Wang C.-Y, Hou D.-R. J. Chin. Chem. Soc. 2012; 59: 389
  • 17 Reddy CR, Rao RR, Sujitha P, Kumar CG. Eur. J. Org. Chem. 2012; 1819
  • 18 Gandi VR. Tetrahedron 2013; 69: 6507
  • 19 Saidhareddy P, Ajay S, Shaw AK. RCS Adv. 2014; 4: 4253
  • 20 Formal synthesis: Zhang H, Yu EC, Torker S, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 16493

    • For syntheses of the enantiomer, see:
    • 21a Waanders PP, Thijs L, Zwanenburg B. Tetrahedron Lett. 1987; 28: 2409
    • 21b Solladie G, Fernandez I, Maestro C. Tetrahedron: Asymmetry 1991; 2: 801
  • 22 For a review on trans-reduction and trans-hydrometalations of alkynes in the context of total synthesis, see: Frihed TG, Fürstner A. Bull. Chem. Soc. Jpn. 2016; 89: 135
  • 23 Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 2794
    • 24a Fürstner A, Seidel G. Angew. Chem. Int. Ed. 1998; 37: 1734
    • 24b Fürstner A, Mathes C, Lehmann CW. J. Am. Chem. Soc. 1999; 121: 9453
    • 24c Fürstner A, Mathes C, Lehmann CW. Chem. Eur. J. 2001; 7: 5299
  • 25 This step might be improved in view of the advances in dihydroxylation chemistry since the publication of this paper; as our prime interest, however, related to the trans-reduction chemistry, we refrained from investigating this possibility.
  • 26 Trost BM, Ball ZT. Synthesis 2005; 853
    • 27a Trost BM, Ball ZT. J. Am. Chem. Soc. 2001; 123: 12726
    • 27b Trost BM, Ball ZT, Jöge T. J. Am. Chem. Soc. 2002; 124: 7922
    • 27c Trost BM, Machacek MR, Ball ZT. Org. Lett. 2003; 5: 1895
    • 27d Trost BM, Ball ZT. J. Am. Chem. Soc. 2005; 127: 17644
    • 27e Trost BM, Ball ZT, Jöge T. Angew. Chem. Int. Ed. 2003; 42: 3415
    • 28a Fürstner A, Radkowski K. Chem. Commun. 2002; 2182
    • 28b Lacombe F, Radkowski K, Seidel G, Fürstner A. Tetrahedron 2004; 60: 7315
  • 29 Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 14050
  • 30 Rummelt SM, Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 3626
  • 31 Rummelt SM, Radkowski K, Rosca D.-A, Fürstner A. J. Am. Chem. Soc. 2015; 137: 5506
    • 32a Rummelt SM, Preindl J, Sommer H, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 6241
    • 32b Sommer H, Fürstner A. Org. Lett. 2016; 18 in press; doi: 10.1021/acs.orglett.6b01431
    • 33a Radkowski K, Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 355
    • 33b Fuchs M, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 3978
    • 33c Leutzsch M, Wolf LM, Gupta P, Fuchs M, Thiel W, Farès C, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 12431
    • 34a O’Connor JM, Friese SJ, Rodgers BL, Rheingold AL, Zakharov L. J. Am. Chem. Soc. 2005; 127: 9346
    • 34b Suzuki N. Bull. Jpn. Soc. Coord. Chem. 2009; 53: 43
    • 35a Fagan PJ, Mahoney WS, Calabrese JC, Williams ID. Organometallics 1990; 9: 1843
    • 35b Fagan PJ, Ward MD, Calabrese JC. J. Am. Chem. Soc. 1989; 111: 1698
    • 35c Steines S, Englert U, Drießen-Hölscher B. Chem. Commun. 2000; 217
  • 36 Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
  • 37 Wu J, Panek JS. Angew. Chem. Int. Ed. 2010; 49: 6165
  • 38 Frantz DE, Fässler R, Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
    • 39a Heppekausen J, Stade R, Goddard R, Fürstner A. J. Am. Chem. Soc. 2010; 132: 11045
    • 39b Heppekausen J, Stade R, Kondoh A, Seidel G, Goddard R, Fürstner A. Chem. Eur. J. 2012; 18: 10281
  • 40 Schaubach S, Gebauer K, Ungeheuer F, Hoffmeister L, Ilg MK, Wirtz C, Fürstner A. Chem. Eur. J. 2016; 22: 9494
    • 41a Persich P, Llaveria J, Lhermet R, de Haro T, Stade R, Kondoh A, Fürstner A. Chem. Eur. J. 2013; 19: 13047
    • 41b Lhermet R, Fürstner A. Chem. Eur. J. 2014; 20: 13188
  • 42 Fürstner A, Guth O, Rumbo A, Seidel G. J. Am. Chem. Soc. 1999; 121: 11108
    • 43a Ahlers A, de Haro T, Gabor B, Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 1406
    • 43b Gebauer K, Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 6393
    • 43c Ungeheuer F, Fürstner A. Chem. Eur. J. 2015; 21: 11387
    • 43d Mailhol D, Willwacher J, Kausch-Busies N, Rubitski EE, Sobol Z, Schuler M, Lam M.-H, Musto S, Loganzo F, Maderna A, Fürstner A. J. Am. Chem. Soc. 2014; 136: 15719
    • 43e Willwacher J, Kausch-Busies N, Fürstner A. Angew. Chem. Int. Ed. 2012; 51: 12041
  • 44 Prolonged heating led to lower yields.
  • 45 Lehr K, Fürstner A. Tetrahedron 2012; 68: 7695
    • 46a Ralston KJ, Ramstadius HC, Brewster RC, Niblock HS, Hulme AN. Angew. Chem. Int. Ed. 2015; 54: 7086
    • 46b Guo L.-D, Huang X.-Z, Luo S.-P, Cao W.-S, Ruan Y.-P, Ye J.-L, Huang P.-Q. Angew. Chem. Int. Ed. 2016; 55: 4064
    • 46c Herstad G, Molesworth PP, Miller C, Benneche T, Tius MA. Tetrahedron 2016; 72: 2084
    • 46d Hötling S, Bittner C, Tamm M, Dähn S, Collatz J, Steidle JL. M, Schulz S. Org. Lett. 2015; 17: 5004
    • 46e Neuhaus CM, Liniger M, Stieger M, Altmann K.-H. Angew. Chem. Int. Ed. 2013; 52: 5866
    • 47a Fürstner A, Grela K, Mathes C, Lehmann CW. J. Am. Chem. Soc. 2000; 122: 11799
    • 47b Fürstner A, Radkowski K, Grabowski J, Wirtz C, Mynott R. J. Org. Chem. 2000; 65: 8758
    • 47c Fürstner A, Stelzer F, Rumbo A, Krause H. Chem. Eur. J. 2002; 8: 1856
    • 47d Fürstner A, Turet L. Angew. Chem. Int. Ed. 2005; 44: 3462
    • 48a Willwacher J, Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 4217
    • 48b Hoffmeister L, Fukuda T, Pototschnig G, Fürstner A. Chem. Eur. J. 2015; 21: 4529
    • 48c Hoffmeister L, Persich P, Fürstner A. Chem. Eur. J. 2014; 20: 4396
    • 48d Chaladaj W, Corbet M, Fürstner A. Angew. Chem. Int. Ed. 2012; 51: 6929
    • 48e Lehr K, Mariz R, Leseurre L, Gabor B, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 11373
    • 48f Hickmann V, Kondoh A, Gabor B, Alcarazo M, Fürstner A. J. Am. Chem. Soc. 2011; 133: 13471
    • 48g Micoine K, Persich P, Llaveria J, Lam M.-H, Maderna A, Loganzo F, Fürstner A. Chem. Eur. J. 2013; 19: 7370
  • 49 Gallenkamp D, Fürstner A. J. Am. Chem. Soc. 2011; 133: 9232
  • 50 Fürstner A. Science 2013; 341: 1229713
  • 51 Gogritchiani E, Niebler S, Egner N, Wörner M, Braun AM, Young T, Gupta P, Shi A, Bossmann SH. Synthesis 2005; 3051
  • 52 Kang S.-K, Kim W.-S, Moon B.-H. Synthesis 1985; 1161
  • 53 Zhou C, Walker AV. Langmuir 2010; 26: 8441
  • 54 Miura T, Shimada M, de Mendoza P, Deutsch C, Krause N, Murakami M. J. Org. Chem. 2009; 74: 6050
  • 55 Muth F, Günther M, Bauer SM, Döring E, Fischer S, Maier J, Drückes P, Köppler J, Trappe J, Rothbauer U, Koch P, Laufer SA. J. Med. Chem. 2015; 58: 443