Doubling Down on Diamines for Direct Arylation Polymerization

Direct arylation polymerization of DTS-I\(_2\) and TPD-H\(_2\)

\[
\begin{align*}
\text{DTS-I}\(_2\) \quad & \quad \text{R} = \text{ethylhexyl} \\
\text{TPD-H}\(_2\) \quad & \quad \text{R} = \text{ethylhexyl}
\end{align*}
\]

Role of TMEDA in direct arylation polymerization

Significance: Side reactions such as homo-coupling and C–H activation at undesirable positions lead to branching, cross-linking, and the formation of insoluble materials during direct arylation polymerization (DArP). The authors developed a novel, mixed ligand catalyst system for palladium-catalyzed DArP. With the addition of tetramethylethylenediamine (TMEDA) as a co-ligand, these side reactions have been prevented and higher polymer molecular weights can be achieved.

Comment: The presence of TMEDA as basic co-ligand interferes with a catalytic cycle that leads to aryl halide (DTS-I\(_2\)) reduction and homo-coupling of an unfunctionalized arene (DTS), the so-called trans route. This promotes the desired cross-coupling reaction to form poly(DTS-alt-TPD) through the cis route.

SYNFACTS Contributors: Timothy M. Swager, John F. Fennell, Jr.

Synfacts 2016, 12(07), 0683 Published online: 17.06.2016

DOI: 10.1055/s-0035-1562334; Reg-No.: S05316SF