Nickel-Catalyzed Decarboxylative Alkyl–Alkyl Cross-Coupling

Decarboxylative alkyl–alkyl cross-coupling:

\[
\begin{align*}
R^1\text{O} & \quad \text{Cl} \\
R^2\text{O} & \quad \text{Cl} \\
\hline
\text{N} & \quad \text{O} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

Nickel catalyst:

\[
\text{NiCl}_2\text{-glyme (20 mol%)}
\]

Ligand:

\[
\text{L (40 mol%)}
\]

DMF–THF, 25 °C, 8–14 h

Selected examples:

R1 = Me, 79% yield
R2 = n-C6H13, 62% yield

Three-component conjunctive cross-coupling:

\[
\begin{align*}
R^1\text{O} & \quad \text{Cl} \\
R^2\text{O} & \quad \text{Cl} \\
\hline
\text{N} & \quad \text{O} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

PhZnCl·LiCl (3 equiv)

Ph\text{ZnCl-glyme (20 mol%)}

Ligand L (40 mol%)

DMF–THF, 25 °C, 8 h

Selected examples:

Et 68% yield

Ph 76% yield

OMe 92% yield

Cl 49% yield

Significance: Baran and co-workers report a nickel-catalyzed decarboxylative cross-coupling of redox-active alkyl esters with dialkylzinc reagents by using a bipyridine ligand to afford a variety of products in very high yields. Remarkable are the high functional group tolerances as well as the mild reaction conditions.

Comment: The authors present a three-component conjunctive cross-coupling by employing benzylacrylate as an acceptor molecule. The formation of quaternary centers is accomplished by the formation of two C–C bonds and the corresponding products are obtained in very high yields.

SYNFACTS Contributors: Paul Knochel, Diana Haas
SYNFACTS 2016, 12(07), 0723 Published online: 17.06.2016
DOI: 10.1055/s-0035-1562328; Reg-No.: P07416SF

2016 © THIEME STUTTGART • NEW YORK