Nickel-Catalyzed Decarboxylative Alkyl–Alkyl Cross-Coupling

Decarboxylative alkyl–alkyl cross-coupling:

\[
\begin{align*}
R_1^1 & \quad R_2^2 \quad O
\end{align*}
\]

\[
\begin{align*}
R_1^1/R_2^2 = 1^\circ, 2^\circ, 3^\circ \text{ Alk} \\
R_3^3 = 1^\circ, 2^\circ \text{ Alk}
\end{align*}
\]

Selected examples:

\[
\begin{align*}
\text{R} & = \text{Me, 79% yield} \\
\text{R} & = n-C_8H_{17}, 62% \text{ yield}
\end{align*}
\]

Three-component conjunctive cross-coupling:

\[
\begin{align*}
\text{R}_1^1 & \quad \text{R}_2^2 \quad \text{O}
\end{align*}
\]

\[
\begin{align*}
\text{R}_1^1 & = \text{Alk} \\
\text{R}_2^2 & = \text{Alk, O(4-ClC}_6\text{H}_4\text{), OMe, SMe, N(Me)Boc}
\end{align*}
\]

Selected examples:

\[
\begin{align*}
\text{Et} & \quad \text{Ph} \quad 68% \text{ yield} \\
\text{OMe} & \quad \text{Ph} \quad 76% \text{ yield} \\
\text{Cl} & \quad \text{Ph} \quad 92% \text{ yield} \\
\text{O} & \quad \text{Ph} \quad 49% \text{ yield}
\end{align*}
\]

Significance: Baran and co-workers report a nickel-catalyzed decarboxylative cross-coupling of redox-active alkyl esters with dialky zinc reagents by using a bipyridine ligand to afford a variety of products in very high yields. Remarkable are the high functional group tolerances as well as the mild reaction conditions.

Comment: The authors present a three-component conjunctive cross-coupling by employing benzylacrylate as an acceptor molecule. The formation of quaternary centers is accomplished by the formation of two C–C bonds and the corresponding products are obtained in very high yields.

SYNFACTS Contributors: Paul Knochel, Diana Haas

Synfacts 2016, 12(07), 0723 Published online: 17.06.2016

DOI: 10.1055/s-0035-1562328; **Reg-No.: P07416SF**