Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation Reaction

Significance: In this report, ruthenium-based transfer hydrogenation catalysts are described. The catalysts exhibit impressive turnover numbers with excellent enantioselectivities for the selective reduction of CF3-substituted 1,3-dicarbonyl compounds. The substrates include benzo-fused cyclic ketones which undergo reduction to furnish one stereoisomer.

Comment: Transfer hydrogenation (TH) reactions are milder and safer alternatives to metal-on-carbon-based hydrogenation reactions. Although the scope is usually limited to the reduction of carbon-yls, TH avoids the use of highly pressurized systems. These reported ruthenium-based transfer hydrogenation catalysts are notable achievements in this field.

SYNFACTS Contributors: Mark Lautens, Alvin Jang

Synfacts 2016, 12(06), 0589 Published online: 17.05.2016
DOI: 10.1055/s-0035-1562190; Reg-No.: L04416SF