Single-Step Enzymatic Synthesis of \(\beta \)-Methyltryptophans

Significance: Arnold and co-workers report an enzymatic single-step synthesis of \(\beta \)-methyltryptophan analogues from various nucleophiles and L-threonine by using a mutant \(\beta \)-subunit of the heteromeric tryptophan synthase from *Pyrococcus furiosus* (PtTrpB). This subunit, derived from directed evolution, proved to be significantly more active than the wild-type subunit.

Comment: By employing directed evolution, the authors have previously achieved the restoration of activity of the sole \(\beta \)-subunit of the heteromeric tryptophan synthase from *Pyrococcus furiosus*, which facilitates applications outside the cell ([Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 14599]). The current work is an intriguing extension that permits the efficient transformation of threonine instead of serine. The resulting \(\beta \)-methyltryptophans are valuable precursors to a variety of natural products and could previously be only accessed by several chemical or enzymatic steps.

Selected examples:

- \(\text{Nu} = \text{HetAr, PhSH} \)
- \(\text{L-threonine (10 equiv)} \)
- \(\text{PLP (0.06–0.6 mol%) DMSO–aq KP buffer, 75 °C} \)

Selected examples:

- 8200 TTN 72% yield dr and er > 99:1
- 220 TTN 17% yield
- 500 TTN 33% yield
- 1300 TTN 14% yield (N-Boc derivative, over two steps)

\(\text{PfTrpB} = \beta \text{-subunit of tryptophan synthase from } \text{Pyrococcus furiosus} \)

\(\text{TTN} = \text{total turnover number} \)

\(\text{Nu} = \text{HetAr, PhSH} \)

Selected examples:

- 8200 TTN 72% yield dr and er > 99:1
- 220 TTN 17% yield
- 500 TTN 33% yield
- 1300 TTN 14% yield (N-Boc derivative, over two steps)

\(\text{PfTrpB} = \beta \text{-subunit of tryptophan synthase from } \text{Pyrococcus furiosus} \)

\(\text{TTN} = \text{total turnover number} \)

Selected examples:

- 8200 TTN 72% yield dr and er > 99:1
- 220 TTN 17% yield
- 500 TTN 33% yield
- 1300 TTN 14% yield (N-Boc derivative, over two steps)