Synlett 2016; 27(11): 1738-1742
DOI: 10.1055/s-0035-1561852
letter
© Georg Thieme Verlag Stuttgart · New York

Reaction between 4-Nitro-1,3-diarylbutan-1-ones and Ammonium Acetate in the Presence of Morpholine and Sulfur: An Efficient Synthesis of 2,4-Diarylpyrroles

Mehdi Adib*
a   School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Neda Ayashi
a   School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Fatemeh Heidari
a   School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Peiman Mirzaei
b   Department of Chemistry, Shahid Beheshti University, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 10 December 2015

Accepted after revision: 01 March 2016

Publication Date:
30 March 2016 (online)


Abstract

An efficient synthesis of 2,4-diarylpyrroles is described. Heating a mixture of a 4-nitro-1,3-diarylbutan-1-one and ammonium acetate in the presence of morpholine and sulfur afforded the corresponding 2,4-diarylpyrroles in excellent yields.

 
  • References and Notes

  • 1 Gribble GW In Comprehensive Heterocyclic Chemistry II . Katritzky AR, Rees CW, Scriven EF. V. Pergamon Press; London: 1996. Vol. 2 Chap. 4,: 207-257 ; and references cited therein
  • 2 d’Ischia M, Napolitano A, Pezzella A In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Chap. 4 Elsevier Science; Oxford: 2008: 353-386 ; and references cited therein
    • 3a Bergman J, Janosik T In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Chap. 3 Elsevier Science; Oxford: 2008: 269-350 ; and references cited therein
    • 3b Gilchrist TL. Heterocyclic Chemistry . Prentice Hall; Englewood Cliffs: 1997. 3rd ed
    • 4a Rao HS. P, Jothilingama S, Scheeren HW. Tetrahedron 2004; 60: 1625
    • 4b Qu S, Dang Y, Song G, Wen M, Huang KW, Wang ZX. J. Am. Chem. Soc. 2014; 136: 4974
    • 4c Srimani D, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
    • 4d Lavallo V, Frey GD, Donnadieu B, Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2008; 47: 5224
  • 5 Buchwald SL, Woods Wannamaker M, Watson BT. J. Am. Chem. Soc. 1989; 111: 776
  • 6 Allen CF. H., Wilson CV. Org. Synth., Coll. Vol. III 1955; 358
  • 7 Rogers J. J. Chem. Soc. 1943; 590
  • 8 Zhang J, Xing C, Tiwari B, Chi YR. J. Am. Chem. Soc. 2013; 135: 8113
  • 9 Kucukdisli M, Ferenc D, Heinz M, Wiebe C, Opatz T. Beilstein J. Org. Chem. 2014; 10: 466
  • 10 Campi EM, Jackson WR, Nilsson Y. Tetrahedron Lett. 1991; 32: 1093
  • 11 Chen F, Shen T, Cui Y, Jiao N. Org. Lett. 2012; 14: 4926
  • 12 Deady LW. Tetrahedron 1967; 23: 3505
  • 13 Zhao W, Carreira EM. Chem. Eur. J. 2006; 12: 7254
    • 14a Fan X, Zhang X, Zhang Y. J. Chem. Res. 2005; 750
    • 14b Fan X, Zhang Y. Tetrahedron Lett. 2002; 43: 1863
  • 15 Hall MJ, McDonnell SO, Killoran J, O’Shea DF. J. Org. Chem. 2005; 70: 5571
  • 16 Umeda R, Mashino T, Nishiyama Y. Tetrahedron 2014; 70: 4395
  • 17 Rogers MA. T. Nature (London, U.K.) 1943; 151: 504
    • 18a Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher WM, O’Shea DF. J. Am. Chem. Soc. 2004; 126: 10619
    • 18b Gresser R, Hartmann H, Wrackmeyer M, Leo K, Riede M. Tetrahedron 2011; 67: 7148
    • 18c Grossi M, Palma A, McDonnell SO, Hall MJ, Rai DK, Muldoon J, O’Shea DF. J. Org. Chem. 2012; 77: 9304
    • 19a Adib M, Janatian Ghazvini H, Soheilizad M, Saeedi S, Tajbakhsh M, Amanlou M. Helv. Chim. Acta 2015; 98: 1079
    • 19b Adib M, Soheilizad M, Rajai-Daryasarei S, Mirzaei P. Synlett 2015; 26: 1101
    • 19c Sayahi MH, Adib M, Hamooleh Z, Zhu LG, Amanlou M. Helv. Chim. Acta 2015; 98: 1231
    • 19d Adib M, Soheilizad M, Zhu LG, Wu J. Synlett 2015; 26: 177
    • 19e Adib M, Bayanati M, Soheilizad M, Janatian Ghazvini H, Tajbakhsh M, Amanlou M. Synlett 2014; 25: 2918
    • 19f Mahernia S, Mahdavi M, Adib M. Synlett 2014; 25: 1299
    • 19g Adib M, Sheikhi E, Haghshenas P, Rajai-Daryasarei S, Bijanzadeh HR, Zhu LG. Tetrahedron Lett. 2014; 55: 4983
  • 20 General Procedure for the Preparation of 2,4-Diarylpyrroles 3a–o, Exemplified with 3a A mixture of 4-nitro-1,3-diphenylbutan-1-one (1a, 1 mmol), sulfur (3 mmol), morpholine (3 mmol), and NH4OAc (6 mmol) within a 5 mL round-bottomed flask was magnetically stirred in a silicone oil bath at 80 °C for 30 min. Progress of the reaction was followed by TLC monitoring. Then the reaction mixture was cooled to ambient temperature, H2O (2.5 mL) was added, and the product was extracted into CH2Cl2 (2 × 2.5 mL). The organic layer was dried over Na2SO4, filtered, the solvent was removed, and the residue was purified by crystallization from EtOAc. 2,4-Diphenyl-1H-pyrrole (3a) Colorless crystals, mp 176–177 °C, yield 0.214 g, 98%. IR (KBr): 3435 (NH), 1598, 1481, 1451, 1411, 1258, 1185, 1157, 1129, 1075, 1030, 903, 807, 746, 688 cm–1. 1H NMR (300.1 MHz, DMSO-d 6): δ = 6.96 (1 H, s, CH), 7.13 (1 H, t, J = 7.5 Hz, CH), 7.18 (1 H, t, J = 7.5 Hz, CH), 7.32 (2 H, t, J = 7.5 Hz, 2 × CH), 7.35 (1 H, s, CH), 7.37 (2 H, t, J = 7.6 Hz, 2 × CH), 7.61 (2 H, d, J = 7.5 Hz, 2 × CH), 7.69 (2 H, d, J = 7.5 Hz, 2 × CH), 11.45 (1 H, br s, NH). 13C NMR (75.5 MHz, DMSO-d 6): δ = 103.7 (C3H), 117.1 (C5H), 123.9 (2 × CH), 124.9 (2 × CH), 125.2 (C4), 125.5 and 126.2 (2 × CH), 129.0 (2 × CH), 129.2 (2 × CH), 132.7 and 133.1 (2 × C) 136.2 (C2). MS: m/z (%) = 219 (100) [M+], 191 (37), 165 (15), 115 (38), 110 (13), 102 (10), 95 (6), 89 (11), 77 (10), 63 (10), 51 (11). HRMS (ES+): m/z calcd for C16H14N [M + H]+: 220.1126; found: 220.1124. 4-(3-Methylphenyl)-2-phenyl-1H-pyrrole (3c) Colorless crystals, mp 140–141 °C, yield 0.214 g, 92%. IR (KBr): 3401 (NH), 1597, 1479, 1451, 1413, 1265, 1225, 1188, 1130, 1038, 929, 898, 760, 688 cm–1. 1H NMR (300.1 MHz, DMSO-d 6): δ = 2.34 (3 H, s, CH3), 6.95 (1 H, d, J = 7.5 Hz, CH), 6.97 (1 H, s, CH), 7.19 (1 H, t, J = 7.8 Hz, CH), 7.21(1 H, dd, J = 8.1, 7.8 Hz, CH), 7.33 (1 H, s, CH), 7.36 (1 H, d, J = 7.5 Hz, CH), 7.40 (2 H, t, J = 7.5 Hz, 2 × CH), 7.46 (1 H, s, CH), 7.69 (2 H, d, J = 7.8 Hz, 2 × CH), 11.45 (1 H, br s, NH). 13C NMR (75.5 MHz, DMSO-d 6): δ = 21.7 (CH3), 103.7 (C3H), 117.0 (C5H), 122.1 (CH), 123.8 (2 × CH), 125.2 (C4), 125.5, 126.1, 126.2 and 128.9 (4 × CH), 129.2 (2 × CH), 132.6, 133.1, 136.0 and 137.9 (3 × C and C2). MS: m/z (%) = 233 (100) [M+], 217 (17), 202 (13), 189 (15), 165 (7), 129 (11), 115 (25), 102 (10), 89 (8), 77 (13), 63 (7), 51 (8). HRMS (ES+): m/z calcd for C17H16N [M + H]+: 234.1283; found: 234.1291. 2-(4-Methylphenyl)-4-phenyl-1H-pyrrole (3h) Colorless crystals, mp 207–209 °C, yield 0.214 g, 92%. IR (KBr): 3385 (NH), 1598, 1532, 1491, 1442, 1259, 1212, 1184, 1132, 1078, 1033, 922, 802, 747, 688 cm–1. 1H NMR (300.1 MHz, DMSO-d 6): δ = 2.30 (3 H, s, CH3), 6.90 (1 H, s, CH), 7.12 (1 H, t, J = 7.5 Hz, CH), 7.19 (2 H, d, J = 7.8 Hz, 2 × CH), 7.31 (1 H, s, CH), 7.32 (2 H, t, J = 7.5 Hz, 2 × CH), 7.58 (2 H, d, J = 7.5 Hz, 2 × CH), 7.61 (2 H, d, J = 7.8 Hz, 2 × CH), 11.39 (1 H, br s, NH). 13C NMR (75.5 MHz, DMSO-d 6): δ = 21.2 (CH3), 103.1 (C3H), 116.6 (C5H), 123.8 (2 × CH), 124.8 (2 × CH), 125.0 (C4), 125.4 (CH), 129.0 (2 × CH), 129.7 (2 × CH), 130.4, 132.8, 135.3 and 136.2 (3 × C and C2). MS: m/z (%) = 233 (100) [M+], 217 (25), 202 (21), 189 (21), 178 (8), 165 (9), 128 (8), 115 (43), 102 (12), 89 (15), 77 (16), 63 (11), 51 (11). HRMS (ES+): m/z calcd for C17H16N [M + H]+: 234.1283; found: 234.1278. 4-(4-Methoxyphenyl)-2-(4-methylphenyl)-1H-pyrrole (3j) Colorless crystals, mp 179–181 °C, yield 0.239 g, 91%. IR (KBr): 3437 (NH), 1610, 1581, 1533, 1500, 1439, 1297, 1238, 1177, 1130, 1033, 1032, 923, 829, 793, 716, 631 cm–1. 1H NMR (300.1 MHz, DMSO-d 6): δ = 2.30 (3 H, s, CH3), 3.75 (3 H, s, OCH3), 6.81 (1 H, s, CH), 6.90 (2 H, d, J = 8.7 Hz, 2 × CH), 7.18 (2 H, d, J = 8.1 Hz, 2 × CH), 7.19 (1 H, s, CH), 7.51 (2 H, d, J = 8.7 Hz, 2 × CH), 7.56 (2 H, d, J = 8.1 Hz, 2 × CH), 11.27 (1 H, br s, CH). 13C NMR (75.5 MHz, DMSO-d 6): δ = 21.2 (CH3), 55.5 (OCH3), 102.9 (C3H), 114.4 (2 × CH), 115.7 (C5H), 123.8 (2 × CH), 124.9 (C4), 126.0 (2 × CH), 129.0 (C), 129.7 (2 × CH), 130.5 and 132.6 (2 × C), 135.1 (C2), 157.5 (CO). MS: m/z (%) = 263 (100) [M+], 248 (90), 220 (12), 204 (12), 178 (14), 165 (7), 152 (6), 132 (10), 119 (23), 102 (6), 91 (17), 77 (10), 65 (7).
  • 21 Nguyen TB, Pasturaud K, Ermolenko L, Al-Mourabit A. Org. Lett. 2015; 17: 2562