Synlett 2016; 27(09): 1339-1343
DOI: 10.1055/s-0035-1561346
letter
© Georg Thieme Verlag Stuttgart · New York

A Concise Enantioselective Synthesis of (+)-L-733,060 and (+)-T-2328 via Sequential Proline Catalysis

Komal G. Lalwani
Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411008, India   Email: a.sudalai@ncl.res.in
,
Arumugam Sudalai*
Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411008, India   Email: a.sudalai@ncl.res.in
› Author Affiliations
Further Information

Publication History

Received: 23 November 2015

Accepted after revision: 11 January 2016

Publication Date:
04 February 2016 (online)


Abstract

A new, sequential proline-catalyzed approach to the synthesis of (+)-L-733,060 and (+)-T-2328 in high optical purity (93% ee) is described starting from phenyl N-Boc imine. The strategy involves proline-catalyzed Mannich reaction of an arylimine with acetaldehyde followed by α-aminoxylation/Wittig olefination in a sequential fashion as the key steps.

Supporting Information

 
  • References

    • 1a Remuson R, Gelas-Mialhe Y. Mini-Rev. Org. Chem. 2008; 5: 193
    • 1b Reynolds T. Phytochemistry 2005; 66: 1399
    • 1c O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 1d Aguinaldo AM, Read RW. Phytochemistry 1990; 29: 2309
    • 1e Ahmad A, Khan KA, Ahmad VU, Qazi S. Planta Med. 1986; 4: 285
    • 1f Bols M. Acc. Chem. Res. 1998; 31: 1
    • 1g Bailey PD, Millwood PA, Smith PD. Chem. Commun. 1998; 633
    • 1h Mitchinson A, Nadin A. J. Chem. Soc., Perkin Trans. 1 1999; 2553
    • 2a Watson PS, Jiang B, Scott B. Org. Lett. 2000; 2: 3679 ; and references cited therein
    • 2b A substructure search of cis-2,3-disubstituted piperidines using the SciFinder data search engine revealed that there are a great number of piperidine derivatives mentioned in patents because of their bioactivity in clinical and preclinical studies.
    • 3a Baker R, Harrison T, Hollingworth GJ, Swain CJ, Williams BJ. EP 528495A1, 1993
    • 3b Harrison T, Williams BJ, Swain CJ, Ball RG. Bioorg. Med. Chem. Lett. 1994; 4: 2545
    • 4a Takahashi M, Miyake T, Yamakita H, Saito A, Asai H. US 0097548A1, 2004
    • 4b Watanabe Y, Asai H, Ishii T, Kiuchi S, Okamoto M, Taniguchi H, Nagasaki M, Saito A. J. Pharmacol. Sci. 2008; 106: 121
    • 4c Watanabe Y, Okamoto M, Ishii T, Takatsuka S, Taniguchi H, Nagasaki M, Saito A. J. Pharmacol. Sci. 2008; 107: 151
  • 5 Desai MC, Lefkowitz SL, Thadeio PF, Longo KP, Snider RM. J. Med. Chem. 1992; 35: 4911
    • 6a Koepfli JB, Mead JF, Brockman JA. J. Am. Chem Soc. 1947; 69: 1837
    • 6b Koepfli JB, Mead JF, Brockman JA. J. Am. Chem Soc. 1949; 71: 1048
  • 7 Cochi A, Pardo DG, Cossy J. Heterocycles 2012; 86: 89
    • 9a Huang P.-Q, Liu L.-X, Wei B.-G, Ruan Y.-P. Org. Lett. 2003; 5: 1927
    • 9b Bhaskar G, Rao BV. Tetrahedron Lett. 2003; 44: 915
    • 9c Yoon Y.-J, Joo J.-E, Lee K.-Y, Kim Y.-H, Oh C.-Y, Ham W.-H. Tetrahedron Lett. 2005; 46: 739
    • 9d Cochi A, Burger B, Navarro C, Gomez Pardo D, Cossy J, Zhao Y, Cohen T. Synlett 2009; 2157
    • 9e Prévot S, Phansavath P, Haddad M. Tetrahedron: Asymmetry 2010; 21: 16
    • 10a Liu R.-H, Fang K, Wang B, Xu M.-H, Lin G.-Q. J. Org. Chem. 2008; 73: 3307
    • 10b Davis FA, Ramachandar T. Tetrahedron Lett. 2008; 49: 870
    • 10c Hélal B, Ferreira F, Botuha C, Chemla F, Pérez-Luna A. Synlett 2009; 3115
    • 10d Garrido NM, Garcia M, Sanchez MR, Diez D, Urones JG. Synlett 2010; 387
    • 10e Lemire A, Grenon M, Pourasharf M, Charette AB. Org. Lett. 2004; 6: 3517
  • 11 Kandula SR. V, Kumar P. Tetrahedron: Asymmetry 2005; 16: 3579
    • 12a Cherian SK, Kumar P. Tetrahedron: Asymmetry 2007; 18: 982
    • 12b Emmanuvel L, Sudalai A. Tetrahedron Lett. 2008; 49: 5736
  • 13 Bilke JL, Moore SP, O’Brien P, Gilday J. Org. Lett. 2009; 11: 1935
  • 14 Takahashi K, Nakano H, Fujita R. Tetrahedron Lett. 2005; 46: 8927
  • 15 Kumaraswamy G, Pitchaiah A. Tetrahedron 2011; 67: 2536
  • 16 Pansare SV, Paul EK. Org. Biomol. Chem. 2012; 10: 2119
    • 17a Chowdari NS, Ramachary DB, Barbas CF. III. Org. Lett. 2003; 5: 1685
    • 17b Zhong G, Yu Y. Org. Lett. 2004; 6: 1637
    • 17c Zhong G. Chem Commun. 2004; 606
    • 17d Liao WW, Ibrahem I, Cordova A. Chem. Commun. 2006; 674
    • 17e Kotkar SP, Chavan VB, Sudalai A. Org. Lett. 2007; 9: 1001
    • 17f Coeffard V, Desmarchelier A, Morel B, Moreau X, Greck C. Org. Lett. 2011; 13: 5778
    • 17g Kumar BS, Venkataramasubramanian V, Sudalai A. Org. Lett. 2012; 14: 2468
    • 17h Lalwani KG, Aher RD, Sudalai A. RSC Adv. 2015; 5: 65554
    • 17i Venkataramasubramanian V, Kiran IN. C, Sudalai A. Synlett 2015; 26: 355
    • 17j Ahuja BB, Sudalai A. RSC Adv. 2015; 5: 21803
    • 17k Rawat V, Kumar BS, Sudalai A. Org. Biomol. Chem. 2013; 11: 3608
    • 17l Aher RD, Kumar BS, Sudalai A. J. Org. Chem. 2015; 80: 2024
    • 18a Kotkar SP, Chavan VB, Sudalai A. Org. Lett. 2007; 9: 1001
    • 18b Kotkar SP, Sudalai A. Tetrahedron Lett. 2006; 47: 6813
    • 18c Rawat V, Chouthaiwale PV, Chavan VB, Suryavanshi G, Sudalai A. Tetrahedron Lett. 2010; 51: 6565
    • 18d Ahuja BB, Sudalai A. Tetrahedron: Asymmetry 2015; 26: 548
    • 18e Ahuja BB, Sudalai A. Tetrahedron: Asymmetry 2015; 26: 24
  • 19 Yang JW, Chandler C, Stadler M, Kampen D, List B. Nature 2008; 452: 453
  • 20 Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
  • 21 α-Aminoxylation/Wittig Olefination To a stirred precooled (–10 °C) MeCN (15 mL) solution of β-aminoaldehyde 6 (1 g, 4.01 mmol) and nitrosobenzene (360 mg, 3.34 mmol) was added l-proline (77 mg, 20 mol%). The mixture was allowed to stir at the same temperature for 20 h followed by the addition of Ph3P=CHCO2 t-Bu (1.91 g, 5.01 mmol) to the reaction mixture, which was stirred for a further 6 h at 0–25 °C. After addition of phosphate buffer, the resulting mixture was extracted with EtOAc (3 × 30 mL) and the combined organic phases were dried over anhyd Na2SO4, filtered and concentrated to give the crude aminoxy unsaturated ester that was directly taken to the next step without purification. To a MeOH (20 mL) solution of the above crude aminoxy unsaturated ester was added Cu(OAc)2·2H2O (140 mg, 0.67 mmol) at 25 °C and the reaction mixture was allowed to stir for 10 h at the same temperature. After addition of phosphate buffer, the resulting mixture was extracted with CHCl3 (3 × 30 mL) and the combined organic phases were dried over anhyd. Na2SO4, filtered and concentrated. The crude residue was purified by column chromatography over silica gel using PE–EtOAc (7.5:2.5) to give syn-aminohydroxycinnamic ester 5. Yield: 1.02 g (70%); colorless liquid; [α]D 25 +11.5 (c 1.0, CHCl3); ee = 93% [chiral HPLC analysis (Chiracel AD-H 250 × 4.6 mm), n-hexane/i-PrOH, (80:20) 0.5 mL/min, 254 nm), t R = 27.200 min (minor), t R = 30.607 min (major). IR (CHCl3): 1322, 1463, 1522, 1621, 1719, 3342 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.41 (s, 9 H), 1.47 (s, 9 H), 2.51 (br s, 1 H), 4.51–4.58 (m, 1 H), 4.72–4.80 (m, 1 H), 5.30 (d, J = 8.1 Hz, 1 H), 6.06 (dd, J = 1.9, 15.7 Hz, 1 H), 6.80 (dd, J = 4.9, 15.7 Hz, 1 H), 7.30–7.37 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 28.1, 28.3, 58.8, 74.3, 80.1, 80.5, 124.1, 126.8, 127.9, 128.8, 145.1, 156.1, 165.5. HRMS (ESI): m/z [M + Na]+ calcd for C20H29NNaO5: 386.1938; found: 386.1919.
  • 22 Sajiki H. Tetrahedron Lett. 1995; 36: 3465
  • 23 (+)-L-733,060 (1) Yield: 98 mg (95%); colorless liquid; [α]D 25 +31.99 (c 1.32, CHCl3) {lit.9b [α]D 25 +34.29 (c 1.32, CHCl3)}. IR (CHCl3): 660, 877, 1123, 1170, 1370, 1577, 2950 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.54 (d, J = 13.9 Hz, 1 H), 1.66–1.75 (m, 1 H), 1.84–1.93 (m, 1 H), 2.85 (td, J = 2.7, 12.2 Hz, 1 H), 3.29 (d, J = 12.0 Hz, 1 H), 3.68 (s, 1 H), 3.86 (s, 1 H), 4.14 (d, J = 12.7 Hz, 1 H), 4.53 (d, J = 12.7 Hz, 1 H), 7.28–7.37 (m, 5 H), 7.44 (s, 2 H), 7.69 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.4, 28.4, 47.0, 64.2, 70.0, 121.2 (m), 124.6 (q, J = 270 Hz), 126.8, 127.2, 127.5, 128.2, 131.2 (q, J = 33.1 Hz), 141.1, 141.6. HRMS (ESI): m/z [M + H]+ calcd for C20H20ONF6: 404.1444; found: 404.1429.
  • 24 Ayedi MA, Le Bigot Y, Ammar H, Abid S, El Gharbi R, Delmas M. Synth. Commun. 2013; 43: 2127
  • 25 4-Cyano-2-fluorophenyl trifluoromethanesulfonate (14) was prepared from 4-bromo-2-fluorophenol. For experimental details, refer to the supporting information.
    • 26a Kulagowski JJ, Curtis NR, Swain CJ, Williams BJ. Org. Lett. 2001; 3: 667
    • 26b Atobe M, Yamazaki N, Kibayashi C. J. Org. Chem. 2004; 69: 5595
  • 27 (+)-T-2328 Dihydrochloride Salt (3) Yield: 38 mg (quant.); colorless solid; mp 279–281 °C (lit.4a 280–281 °C); [α]D 25 +70.1 (c 0.6, H2O). IR (CHCl3): 680, 889, 1128, 1250, 1370, 1556, 2923, 3350 cm–1. 1H NMR (400 MHz, D2O): δ = 2.07 (s, 2 H), 2.25 (d, J = 7.8 Hz, 1 H), 2.46 (d, J = 14.9 Hz, 1 H), 3.29 (quin, J = 7.3 Hz, 1 H), 3.60 (s, 3 H), 3.66–3.72 (m, 1 H), 4.02 (dd, J = 3.4, 16.1 Hz, 2 H), 4.29 (d, J = 13.2 Hz, 1 H), 4.92 (d, J = 2.9 Hz, 1 H), 7.25 (d, J = 6.6 Hz, 2 H), 7.32 (s, 1 H), 7.44 (d, J = 7.1 Hz, 3 H), 7.49–7.58 (m, 4 H). 13C NMR (100 MHz, D2O): δ = 16.8, 22.7, 43.3, 47.5, 55.3, 55.6, 58.0, 110.9, 111.6, 117.2, 118.4, 119.9 (d, J = 27.0 Hz), 126.2, 126.4, 128.9 (d, J = 3.1 Hz), 129.8, 130.0, 130.4, 131.2, 132.0, 132.6 (d, J = 3.1 Hz), 132.7, 157.4, 157.7 (d, J = 248 Hz). HRMS (ESI): m/z [M + H]+ calcd for C26H27ON3F: 416.2133; found: 416.2114.