Synlett 2016; 27(06): 951-955
DOI: 10.1055/s-0035-1561291
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Amidation of Arylboronic Acids with Nitriles

He Huang
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Zhong-Tao Jiang
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Yang Wu
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Cheng-Yan Gan
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Jin-Mei Li
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Shi-Kai Xiang*
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Chun Feng
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Bi-Qin Wang*
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. of China   Email: xiangsk@hotmail.com   Email: wanbiqin1964@126.com
,
Wei-Te Yang
b   Department of Public Health, Chengdu Medical College, Chengdu, 610500, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 03 October 2015

Accepted after revision: 22 November 2015

Publication Date:
11 December 2015 (online)


Abstract

A copper-catalyzed amidation of arylboronic acids with nitriles has been developed. This reaction provides an efficient and complementary methodology for the synthesis of various N-arylamides with a broad substrate scope.

Supporting Information

 
  • References and Notes

    • 1a Zhang D.-W, Zhao X, Hou J.-L, Li Z.-T. Chem. Rev. 2012; 112: 5271
    • 1b Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 1c Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 1d Tew GN, Liu D, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, Klein ML, DeGrado WF. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 5110

      For reviews, see:
    • 2a Thomas AM, Sujatha A, Anilkumar G. Mini-Rev. Org. Chem. 2015; 12: 3
    • 2b Jiang Y, Ma D In Catalysis without Precious Metals. Bullock RM. Wiley-Blackwell; Weinheim: 2010: 213-233
    • 2c Wang Y, Zeng J, Cui X. Chin. J. Org. Chem. 2010; 30: 181 ; in Chinese

      For reviews, see:
    • 3a Downs EL, Tyler DR. Coord. Chem. Rev. 2014; 280: 28
    • 3b Ahmed TJ, Knapp SM. M, Tyler DR. Coord. Chem. Rev. 2011; 255: 949

      For some selected examples, see:
    • 4a Chemat F, Poux M, Berlan J. J. Chem. Soc., Perkin Trans. 2 1996; 1781
    • 4b Siegfried L, Comparone A, Neuburger M, Kaden TA. Dalton Trans. 2005; 30
    • 4c Sahnoun S, Messaoudi S, Peyrat J.-F, Brion J.-D, Alami M. Tetrahedron Lett. 2012; 53: 2860
    • 4d Li Z, Wang L, Zhou X. Adv. Synth. Catal. 2012; 354: 584
    • 4e Hirano T, Uehara K, Kamata K, Mizuno N. J. Am. Chem. Soc. 2012; 134: 6425
    • 4f Tomás-Mendivil E, García-Álvarez R, Vidal C, Crochet P, Cadierno V. ACS Catal. 2014; 4: 1901
    • 4g Tomás-Mendivil E, Suárez FJ, Díez J, Cadierno V. Chem. Commun. 2014; 50: 9661
    • 4h Tomás-Mendivil E, Menéndez-Rodríguez L, Francos J, Crochet P, Cadierno V. RSC Adv. 2014; 4: 63466
    • 4i Tong P, Yang D, Li Y, Wang B, Qu J. Organometallics 2015; 34: 3571
    • 4j Midya GC, Kapat A, Maiti S, Dash J. J. Org. Chem. 2015; 80: 4148
    • 4k Matsuoka A, Isogawa T, Morioka Y, Knappett BR, Wheatley AE. H, Saito S, Naka H. RSC Adv. 2015; 5: 12152
    • 5a Xiang S.-K, Zhang D.-X, Hu H, Shi J.-L, Liao L.-G, Feng C, Wang B.-Q, Zhao K.-Q, Hu P, Yang H, Yu W.-H. Adv. Synth. Catal. 2013; 355: 1495
    • 5b Zhang D.-X, Xiang S.-K, Hu H, Tan W, Feng C, Wang B.-Q, Zhao K.-Q, Hu P, Yang H. Tetrahedron 2013; 69: 10022
    • 5c Wang J, Yin X, Wu J, Wu D, Pan Y. Tetrahedron 2013; 69: 10463
    • 6a Karad SN, Liu R.-S. Angew. Chem. Int. Ed. 2014; 53: 5444
    • 6b Xiang S.-K, Tan W, Zhang D.-X, Tian X.-L, Feng C, Wang B.-Q, Zhao K.-Q, Hu P, Yang H. Org. Biomol. Chem. 2013; 11: 7271
    • 6c Rao B, Zeng X. Org. Lett. 2014; 16: 314
    • 6d Hosseini-Sarvari M, Khanivar A, Moeini F. J. Mater. Sci. 2015; 50: 3065
    • 6e Yu J, Xia Y, Lu M. Appl. Organomet. Chem. 2014; 28: 764
    • 6f Okamoto S, Sugiyama Y. Synlett 2013; 24: 1044
    • 6g Prasad Tulichala RN, Kumara Swamy KC. Chem. Commun. 2015; 51: 12008
    • 6h Mani NS, Fitzgerald AE. J. Org. Chem. 2014; 79: 8889
    • 6i Zhao J, Zhang S, Zhang W, Xi Z. Organometallics 2014; 33: 8
    • 6j Kang B, Fu Z, Hong SH. J. Am. Chem. Soc. 2013; 135: 11704
    • 6k Hu C, Yan X, Zhou X, Li Z. Org. Biomol. Chem. 2013; 11: 8179
  • 7 Xiang S.-K, Li J.-M, Huang H, Feng C, Ni H.-L, Chen X.-Z, Wang B.-Q, Zhao K.-Q, Hu P, Redshaw C. Adv. Synth. Catal. 2015; 357: 3435
  • 8 Surya Prakash GK, Moran MD, Mathew T, Olah GA. J. Fluorine Chem. 2009; 130: 806
  • 9 General Procedure Cu(OTf)2 (10.8 mg, 0.03 mmol) and phenylboronic acid (1a, 36.6 mg, 0.3 mmol) were placed into a 25 mL Schlenk tube equipped with a magnetic stir bar. To this mixture were added in sequence DCE (1.0 mL, contains 0.1% v/v H2O), benzonitrile (2a, 36.8 μL, 0.36 mmol), BF3·OEt2 (75 μL, 0.6 mmol), and MesI(OAc)2 (163.8 mg, 0.45 mmol, dissolved in 1.0 mL of DCE containing 0.1% v/v H2O) with an injection syringe under stirring under an argon atmosphere. After the reaction mixture was stirred for 2 h at 90 °C, TMSOTf (108 μL, 0.6 mmol) was added with an injection syringe. After stirring again for 2 h, H2O (16 μL, 0.9 mmol) was added, and the reaction was carried out for additional 20 h. The solution was cooled to r.t. and quenched by the addition of H2O (20 mL) and extracted with CH2Cl2 (3 × 10 mL). The organic layer was dried over anhydrous MgSO4 and concentrated in vacuum. The residue was purified by column chromatography on silica gel (eluent: PE–EtOAc–CH2Cl2, 7:1:1) to afford the product 3aa. IR (KBr): νmax = 3345, 1656, 1579, 1259, 751, 690 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.89–7.86 (m, 2 H), 7.84 (s, 1 H), 7.65 (d, J = 7.6 Hz, 2 H), 7.58–7.53 (m, 1 H), 7.52–7.47 (m, 2 H), 7.41–7.36 (m, 2 H), 7.16 (t, J = 7.2 Hz, 1 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 165.5, 139.1, 134.9, 131.5, 128.5, 128.3, 127.6, 123.6, 120.3. ESI-MS: m/z = 198.1 [M + H]+.
    • 11a Ichiishi N, Canty AJ, Yates BF, Sanford MS. Org. Lett. 2013; 15: 5134
    • 11b Ichiishi N, Canty AJ, Yates BF, Sanford MS. Organometallics 2014; 33: 5525
    • 11c Lv T, Wang Z, You J, Lan J, Gao G. J. Org. Chem. 2013; 78: 5723
    • 11d Skucas E, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 9090
    • 11e Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172