Copper-Catalyzed Asymmetric Ring Opening of D–A Cyclopropanes

Significance: The authors report a copper-catalyzed enantioselective ring-opening reaction of donor–acceptor cyclopropanes with water. A variety of ring-opening products were obtained in high yields (≥96%) and enantioselectivities (≥95% ee).

Comment: In this reaction, the copper hydrate serves as both a Lewis acid and a source of water; this affords a system for the controlled release of the appropriate amount of water as a nucleophile in the asymmetric catalysis. The method provides a new and efficient approach for direct access to γ-substituted γ-hydroxybutyric acid derivatives.

Selected examples:

- \[\text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \]
 - R
 - \(R \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \)
 - MeO
 - 95% yield
 - 93% ee

- \[\text{PhCO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \]
 - \(\text{Ph} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \)
 - 95% yield
 - 87% ee

- \[\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \]
 - MeO
 - 70% yield
 - 95% ee

- \[\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \]
 - Ph
 - 91% yield
 - 82% ee

- \[\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \]
 - BocN
 - 96% yield
 - 87% ee

Effect of the water loading:

- "excessive amount of water"
 - \(\text{H}_2\text{O} \) (5.0 equiv)
 - Cu(OTf)$_2$ (10 mol%)
 - DME, r.t.
 - \(\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \)
 - 91% yield, 66% ee

- "appropriate amount of water"
 - Cu(ClO$_4$)$_2$ 6H$_2$O (15 mol%)
 - DME, r.t.
 - \(\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \)
 - 91% yield, 92% ee

- "water free"
 - Cu(OTf)$_2$ (10 mol%)
 - DME, r.t.
 - \(\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \)
 - 34% yield, 90% ee

- "removal of water"
 - 4 Å MS
 - Cu(OTf)$_2$ (10 mol%)
 - DME, r.t.
 - \(\text{OH} \text{CO}_2(2-\text{Ad}) \text{CO}_2(2-\text{Ad}) \)
 - product not observed

SYNFACTS Contributors: Hisashi Yamamoto, Masahiro Sai

SYNFACTS 2016, 12(2), 0171 Published online: 19.01.2016
DOI: 10.1055/s-0035-1561173; Reg-No.: H18015SF