A Second-Generation Chemoenzymatic Total Synthesis of Platencin

Rehmani N. Muhammad, Alistair G. Draffan, Martin G. Banwell, Anthony C. Willis

Abstract A total synthesis of the potent antibacterial agent platencin is described. The reaction sequence used involves, as starting material, an enantiomerically pure cis-1,2-dihydrocatechol derived from the whole-cell biotransformation of iodobenzene. Simple chemical manipulations of this metabolite provide a triene that engages in a thermally induced intramolecular Diels–Alder reaction to establish the octahydro-2H-1,2-dihydro-2,4a-ethanonaphthalene core of platencin.

Key words antibacterial, cross-coupling, cycloaddition, natural product, total synthesis

The rapidly accelerating emergence of highly drug resistant and multidrug-resistant bacteria, often described as superbugs, is a source of great concern and such that various commentators suggest the world is sliding into a ‘post-antibiotic era’ with potentially apocalyptic consequences.1,2 A range of possible solutions to this profoundly challenging situation has been suggested,2 not the least being the identification of new, structurally unusual antibacterial agents displaying novel modes of action. Despite the impediments involved,2c there have been some successes in this regard. Of particular note is the isolation and structural elucidation of the Streptomyces platensis-derived compounds platensimycin (1) and platencin (2) and their identification as potent and selective inhibitors of certain enzymes associated with the type II bacterial fatty acid biosynthetic (FASII) pathway (Figure 1).3

As a result of their enzyme-inhibitory properties, compounds 1 and 2 display particularly efficacious in vitro activities against, for example, vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), and extensively drug-resistant Mycobacterium tuberculosis.3 While there has been debate about the likely clinical benefit of FASII inhibitors such as 1 and 2 in the presence of potentially ‘recruitable’ extracellular fatty acids, evidence is now emerging of their utility in vivo.4 Accordingly, platensimycin (1) and platencin (2) are regarded as important new leads in the development of urgently required and clinically effective next-generation antibacterial agents.3,4

As part of a range of programs directed towards the identification of clinically useful analogues,5 various studies have focussed on establishing total syntheses of platensimycin (1) and platencin (2).6–10 In 2008, we reported7 a synthesis of the tricyclic enone 3 (Figure 2), an advanced intermediate in Nicolaou’s original total synthesis6a of platencin (2). The starting material used in our study was the enantiomerically pure cis-1,2-dihydrocatechol (4) obtained through a whole-cell biotransformation of iodobenzene using a genetically engineered microorganism E. coli JM109 (pDTG601) that overexpresses the enzyme toluene dioxygenase.11 Over a number of simple steps,7 including a Negishi cross-coupling reaction, compound 4 was converted into a triene that participated in a thermally induced intra-

Figure 1 Platensimycin (1) and platencin (2)
molecular Diels–Alder (IMDA) reaction, thus affording the tricarbocyclic framework embodied within compounds 2 and 3.

A difficulty associated with this approach was the limited amount of intermediate 3 available by such means. Furthermore, introducing the required C4 methyl and propionic acid groups in an efficient and stereocontrolled manner proved problematic. In an attempt to address these issues, we recently reported an alternate IMDA-based approach that delivered a more highly functionalised form of compound 3 and one that could be converted, over a further thirteen steps, into platencin. However, significant functional group incompatibilities were encountered in this first chemoenzymatic total synthesis of the title natural product. Given the deficiencies associated with both of our previous routes we pursued a second-generation chemoenzymatic total synthesis. As a result, we have established, previous routes we pursued a second-generation chemoenzymatic total synthesis of the title natural product. Given the deficiencies associated with both of our earlier approach to enone 3.

The retrosynthetic analysis employed in the present study is shown in Scheme 1 and anticipated that target 2 could be prepared, through straightforward functional group interconversions (FGI), from ester 5 that would itself be formed by employing, as a first step, we previously reported IMDA reaction of the triene 6 and then elaborating the resulting adduct into the pivotal subtarget 5. In our original studies we showed that the substrate 6 required for the crucial IMDA reaction could be obtained through Negishi cross-coupling of the iodide 7 with the easily generated organozinc species 8. Compound 7 is the readily accessible acetonide derivative of cis-1,2-dihydrocatechol (4), while the iodide precursor to compound 8 can be produced in just four steps from diallyl alcohol.

The opening stage of the present synthesis involved, as we have shown previously but repeat here for the sake of completeness, conversion (Scheme 2) of the known8 and racemic iodide 9 into the organozinc species 8 by successive treatment of the former compound with t-butyllithium and then iodine between −78 and 18 °C followed by cross-coupling of the latter with iodide 7 in the presence of Pd(PPh3)4. By such means, the triene 6′ was obtained as a 1:1 mixture of diastereoisomers in 73% yield (from 9). While rather acid sensitive, when a toluene solution of compound 6 containing butylated hydroxytoluene (BHT – added to suppress oxidative degradation of the substrate) was heated at 110 °C for 16 hours, the corresponding mixture of diastereoisomeric Diels–Alder adducts 107,16 was obtained in 89% combined yield.

The means for converting the diastereoisomeric forms of compound 10 into the ester 5 are shown in Scheme 3 and involved, as a first step, treating the former compound with tetra-n-butylammonium fluoride (TBAF) in THF at 18 °C. The β-epimeric form of compound 10 (embodied an endo-configured TBSO group) was converted into the corresponding alcohol 11 over 56 hours and in 86% yield, while the notionally more hindered α-epimer7 took just 16 hours to react under the same conditions and afforded the anticipated alcohol in 97% yield.

Hydrogenation of alcohol 11 (as a mixture of epimers) at atmospheric pressures using 10% palladium on carbon as catalyst and ethanol as solvent afforded the corresponding mixture of saturated alcohols 12 in (97% combined yield) and this was oxidised to the corresponding ketone 13 (95%) using pyridinium dichromate (PDC). In order to generate the enone required for the twofold α-alkylation reaction that would deliver subtarget 5, compound 13 was treated with trimethylsilyl triflate (TMSOTf) in the presence of trimethylamine. The ensuing mixture of silyl enol ethers was exposed to o-iodoxybenzoic acid (IBX) in the presence of 4-methoxypyridine-N-oxide (MPO) and thereby affording a (flash) chromatographically separable mixture of enones 14 (21%) and 15 (65%). The spectroscopic data derived from these products were in complete accord with the assigned structures, and that of the former was confirmed.
by single-crystal X-ray analysis.19 Treatment of compound 15 with potassium hexamethydisilazide (KHMDS) and trapping of the ensuing enolate at \(-78 \, ^\circ\text{C}\) with methyl iodide afforded compound 16 (78%), and the structure of this product was also confirmed by single-crystal X-ray analysis.19 Following protocols reported by Nicolaou et al.,6b compound 16 was treated with \(t\)-BuOK and \(t\)-butyl acrylate, producing a mixture of the epimeric esters 17 (17%) and 5 (68%) that could only be separated by (semi-preparative) HPLC techniques.

The reaction sequence used to convert ester 5 into platencin (2) is shown in Scheme 4 and parallels that employed in our first-generation route to the natural product.5 Thus, the acetonide residue associated with compound 5 was cleaved using acid-activated Dowex-50 resin in a metha-
nol-water-THF mixture at 65 °C and, after 36 hours, a 63% yield (at 83% conversion) of the required diol 18 was realised. Regioselective oxidation of the hydroxyl group remote from the cyclohexenone substructure within compound 18 could be achieved using the sterically demanding oxammonium salt derived from the p-toluenesulfonic acid (PTSA)-promoted disproportionation of 4-acetamido-TEMPO20 and the acyloin 19 (91%) thus obtained. As the first step in the removal of the remaining hydroxyl group within compound 19 this was converted into the corresponding acetate (83%) under standard conditions. Reductive cleavage of the newly introduced ester residue was most conveniently achieved using the readily prepared but distinctly underutilised vanadium(II) complex \([V_2Cl_3(THF)_6][Zn_2Cl_6]\) first introduced for this purpose by Torii and co-workers over two decades ago.21–23 The reaction proceeded rapidly under ultrasonication conditions and afforded dione 21 in 81% yield. Selective methylation of the nonconjugated ketone carbonyl moiety within compound 21 was achieved using the Wittig reagent under carefully controlled conditions,9 to afford the previously reported ester 22 in 85% yield. In contrast to observations of Nicolaou and co-workers,6b it was found that the t-butyl ester moiety within this last compound could be cleaved using trifluoroacetic acid (TFA, at 18 °C for 0.5 h) without any accompanying conversion of the exocyclic olefin to its endocyclic isomer. Platencinic acid (23)6,8,9,24 was thus formed in ca. 85% yield. The spectroscopic data derived from this material were in complete accord with those reported by both our group9 and by others.6,8 Because we have previously6b coupled this last compound with aniline 24 to form platencin (2) in 42% yield, the present work constitutes a formal synthesis of the title natural product.

The route to platencin (2) described here exploits the capacity, as reported in our earlier studies,7 of the readily accessible and enantiomerically pure triene 6 to engage in an IMDA reaction and thereby generate the tricarbocyclic framework of the natural product. The value of the work

Scheme 4 End game: conversion of ester 5 into platencin (2)
detailed above lies in the defining of a method by which cys-
cloadduct 10 can be elaborated to platencinic acid (23), an
immediate precursor to platencin and itself a naturally oc-
curring compound.24 The present route is slightly shorter
than our first-generation chemoenzymatic synthesis of pla-
tencin. However, it remains wanting because of an inability
to install the enone double bond in a completely regiocon-
trolled manner and a failure to fully control the stereoselec-
tivity of the Michael addition reaction (16 → 5) that estab-
lishes the C4 quaternary carbon centre. The second issue is
the more problematic because of the need to resort to te-
rious HPLC techniques to separate the diastereoisomeric
product esters 5 and 17 (see Scheme 3). Efforts focussed on
addressing such matters as well as exploiting the protocols
reported here for the purposes of preparing platencin anal-
ogues are under investigation.

Acknowledgment
We thank the Australian Research Council and the Institute of Ad-
vanced Studies for financial support including the provision of a
scholarship to R.N.H.

Supporting Information
Supporting information for this article is available online at

References and Notes
(1) (a) Hancock, R. E. W. Nat. Rev. Drug Discov. 2007, 6, 28.
(c) Shapiro, S. J. Antibiot. 2013, 66, 371. (d) Tommasi, R.; Brown,
D. G.; Walkup, G. K.; Manchester, J. I.; Miller, A. A. Nat. Rev. Drug
Discov. 2015, 14, 529.
(2) (a) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L.
Nat. Rev. Drug Discov. 2007, 6, 29. (b) Lewis, K. Nature (London,
U.K.) 2012, 485, 439. (c) Lewis, K. Nat. Rev. Drug Discov. 2013, 12,
(e) Garber, K. Nat. Rev. Drug Discov. 2015, 14, 445.
(3) For some reviews, see: (a) Tiefenbacher, K.; Mulzer, J. Angew.
Chem. Int. Ed. 2008, 47, 2548. (b) Palanichamy, K.; Kaliappan,
J. Antibiot. 2011, 64, 705. (d) Saleem, M.; Hussain, H.; Ahmed,
(e) Allahverdiyeva, A. M.; Bagirova, M.; Abamor, E. S.; Ates, S. C.;
Drug Resist. 2013, 6, 99.
Agents Chemother. 2015, 59, 849; and references cited therein.
(5) See, for example: (a) Leung, G. Y. C.; Li, H.; Toh, Q.-Y.; Ng, A. M.-
183. (b) Plesch, E.; Bracher, F.; Krauss, J. Arch. Pharm. 2012, 345,
2014, 82, 501; and references cited therein.
Ed. 2008, 47, 1780. (b) Nicolau, K. C.; Tria, G. S.; Edmonds, D. J.;
(7) Austin, K. A. B.; Banwell, M. G.; Willis, A. C. Org. Lett. 2008, 10,
4465.
(9) Chang, E. L.; Schwartz, B. D.; Draffan, A. G.; Banwell, M. G.;
(10) (a) Moustafa, G. A. I.; Saku, Y.; Aoyama, H.; Yoshimitsu, T. Chem.
Commun. 2014, 50, 15706. (b) Wang, J. W.; Sun, W.-B.; Li, Y. Z.;
Wang, X.; Sun, B.-F.; Lin, G.-Q.; Zou, J.-P. Org. Chem. Front. 2015,
2, 674; and references cited therein.
(11) For reviews on methods for generating cis-1,2-dihydrocatechols by
microbial dihydroxylation of the corresponding aromatics, as
well as the synthetic applications of these metabolites, see:
(a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichimica Acta
1999, 32-35. (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.;
Joliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Voegtle,
(e) Bon, D. J.-Y.; Lee, B.; Banwell, M. G.; Cade, I. A. Chim. Oggi
2012, 30, 22; Chiral Technologies Supplement. (f) Rinner, U.
Chiral Pool Synthesis: Chiral Pool Syntheses from cis-Cyclohexadi-
ene Diols, in Comprehensive Chirality; Carreira, E. M.;
(13) For general procedures for the preparation of acetones of this
type, see: Hudlicky, T.; Boros, E. E.; Olivo, H. F.; Merola, J. S.
(14) These types of acetones are prone to dimerization: Ley, S. V.;
(15) Boyd, D. R.; Sharma, N. D.; Byrne, B.; Hand, M. V.; Malone, J. F.;
(16) For some key earlier studies on the Diels–Alder cycloaddition
reactions of cis-1,2-dihydrocatechol derivatives, see: (a) First
example, used for proof of structure: Gibson, D. T.; Hensley, M.;
Yoshiohka, H.; Mabry, T. J. Biochemistry 1970, 9, 1626. (b) First
application in synthesis, singlet oxygen as dienophile: Hudlicky,
T.; Luna, H.; Barbieri, G.; Kwart, L. D. J. Am. Chem. Soc. 1988, 110,
4735. (c) First IMDA reaction: Hudlicky, T.; Seoane, G.; Pettus,
Pittol, C. A.; Pryce, R. J.; Roberts, S. M.; Ryback; G.; Williams, J. O.
Molloy, K.; Pittol, C. A.; Pryce, R. J.; Roberts, S. M.; Ryback; G.;
1 1991, 1255.
(17) Detailed experimental protocols for the synthesis of all new
compounds and the spectroscopic data derived from them are
provided in the Supporting Information.
(19) Details of this X-ray analysis, including the derived ORTEP, are
provided in the Supporting Information.
(20) This protocol is based on one first described by Ma and Bobbitt:
(22) Procedure for the Reductive Deoxygenation of Compound 20
A solution of freshly prepared VCl₃·(THF)₃ (210 mg, 0.56
mmol) in dry toluene (2.5 mL) maintained at 18 °C was treated
with freshly activated Zn dust (37 mg, 0.56 mmol) and the
ensuing mixture irradiated in an ultrasonic bath (B2500R-DTH
model from Branson) for 0.33 h. After this time a solution of
acetate 20 (109 mg, 0.28 mmol) in toluene (1.5 mL) was added
and sonication continued for 0.66 h. The reaction mixture was

© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 61–66

then diluted with EtOAc (5.0 mL) and passed through a short plug of TLC-grade silica gel that was washed with EtOAc (3 × 5 mL). The combined filtrates were washed with H₂O (1 × 10 mL) before being dried (MgSO₄), filtered, and concentrated under reduced pressure. The resulting light-yellow oil was subjected to flash chromatography (silica, 1:4 v/v EtOAc–hexane elution) to afford, after concentration of the relevant fractions (Rf = 0.4), compound 21⁵ (75 mg, 81%) as a white foam. A full spectroscopic data set for this compound is provided in the Supporting Information.