Boron-Catalyzed N-Alkylation of Amines Using Carboxylic Acids

Significance: The boron-based catalyst \(\text{B(C}_6\text{F}_5\text{)}_3 \), which can form a frustrated Lewis pair (FLP), catalyzes the N-alkylation of amines using carboxylic acids in the presence of a silane reducing agent. The boron catalyst enables reductive carbon–nitrogen bond formation in preference to the reduction of the carboxylic acid. Only 1.0 mol% of the boron catalyst is required. Twenty-four examples of the N-methylation of various primary and secondary amines using formic acid and eighteen examples of the N-alkylation of aniline with various carboxylic acids illustrate the scope of the reaction.

Comment: The utility of the N-alkylation reaction is illustrated by the small-scale synthesis of three pharmaceutical agents. Cinacalcet (Sensipar®; Mimpara®) is a calcimimetic that is useful for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease and hypercalcemia in patients with parathyroid carcinoma. Piribedil (Pronoran®) is a D2 and D3 receptor agonist that is used to treat Parkinson’s disease. Butenafine (Mentax®) is a squalene epoxidase inhibitor that blocks the synthesis of ergosterol. It is used as a topical antifungal agent.

SYNFACTS Contributors: Philip Kocienski

SYNFACTS 2015, 11(11), 1121 Published online: 19.10.2015

DOI: 10.1055/s-0035-1560694; **Reg-No.:** K05515SF

Category

Synthesis of Natural Products and Potential Drugs

Key words

Cinacalcet

Butenafine

Piribedil

N-alkylation

carboxylic acids

boron catalysis

frustrated Lewis pairs