Synlett 2015; 26(19): 2673-2678
DOI: 10.1055/s-0035-1560648
letter
© Georg Thieme Verlag Stuttgart · New York

Indium Versus Gold Catalysis in Dehydrative Reactions with Allylic Alcohols

Stacey Webster
Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK   Email: A.Lee@hw.ac.uk
,
Louise Schaefer
Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK   Email: A.Lee@hw.ac.uk
,
Graeme Barker
Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK   Email: A.Lee@hw.ac.uk
,
Ai-Lan Lee*
Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK   Email: A.Lee@hw.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 17 August 2015

Accepted after revision: 14 September 2015

Publication Date:
02 October 2015 (online)


Abstract

Indium(III) chloride can be used as a cheaper alternative to gold(I) complexes as a catalyst in dehydrative reactions with allylic alcohols. There is often an improvement in yield and, in particular, indium(III) chloride outperforms gold(I) as a catalyst in chemoselective reactions. For example, substrates with pendent alkyne or alkene groups react poorly under gold(I) catalysis, but are better tolerated under indium(III) chloride catalysis.

Supporting Information

 
  • References and Notes


    • For selected reviews on homogeneous gold(I) catalysis, see:
    • 1a Bandini M. Chem. Soc. Rev. 2011; 40: 1358
    • 1b Bongers N, Krause N. Angew. Chem. Int. Ed. 2008; 47: 2178
    • 1c Boorman TC, Larrosa I. Chem. Soc. Rev. 2011; 40: 1910
    • 1d Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 1e Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
    • 1f Gorin DJ, Toste FD. Nature 2007; 446: 395
    • 1g Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 1h Jiménez-Núñez E, Echavarren AM. Chem. Commun. 2007; 333
    • 1i Li ZG, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
    • 1j Muzart J. Tetrahedron 2008; 64: 5815
    • 1k Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 1l Sengupta S, Shi X. ChemCatChem 2010; 2: 609
    • 1m Shen HC. Tetrahedron 2008; 64: 3885
    • 1n Shen HC. Tetrahedron 2008; 64: 7847

      For reviews, see:
    • 2a Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 2b Hashmi AS. K, Bührle M. Aldrichimica Acta 2010; 43: 27

      For reviews, see:
    • 3a Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
    • 3b Bandini M. Angew. Chem. Int. Ed. 2011; 50: 994

      For selected examples, see:
    • 4a Aponick A, Biannic B. Org. Lett. 2011; 13: 1330
    • 4b Aponick A, Biannic B, Jong MR. Chem. Commun. 2010; 46: 6849
    • 4c Aponick A, Li CY, Biannic B. Org. Lett. 2008; 10: 669
    • 4d Bandini M, Monari M, Romaniello A, Tragni M. Chem. Eur. J. 2010; 16: 14272
    • 4e Biannic B, Ghebreghiorgis T, Aponick A. Beilstein J. Org. Chem. 2011; 7: 802
    • 4f Cera G, Chiarucci M, Mazzanti A, Mancinelli M, Bandini M. Org. Lett. 2012; 14: 1350
    • 4g Chiarucci M, Locritani M, Cera G, Bandini M. Beilstein J. Org. Chem. 2011; 7: 1198
    • 4h Ghebreghiorgis T, Biannic B, Kirk BH, Ess DH, Aponick A. J. Am. Chem. Soc. 2012; 134: 16307
    • 4i Kothandaraman P, Foo SJ, Chan PW. H. J. Org. Chem. 2009; 74: 5947
    • 4j Mukherjee P, Widenhoefer RA. Org. Lett. 2010; 12: 1184
    • 4k Mukherjee P, Widenhoefer RA. Org. Lett. 2011; 13: 1334
    • 4l Mukherjee P, Widenhoefer RA. Angew. Chem. Int. Ed. 2012; 51: 1405
    • 4m Unsworth WP, Stevens K, Lamont SG, Robertson J. Chem. Commun. 2011; 47: 7659
    • 4n Mukherjee P, Widenhoefer RA. Chem. Eur. J. 2013; 19: 3437
    • 5a Young PC, Schopf NA, Lee A.-L. Chem. Commun. 2013; 49: 4262
    • 5b Wright JR, Young PC, Lucas NT, Lee A.-L, Crowley JD. Organometallics 2013; 32: 7065
    • 5c Coutant E, Young PC, Barker G, Lee A.-L. Beilstein J. Org. Chem. 2013; 9: 1797
    • 5d Barker G, Johnson DG, Young PC, Macgregor SA, Lee A.-L. Chem. Eur. J. 2015; 21: 13748
  • 6 Herkert L, Green SL. J, Barker G, Johnson DG, Young PC, Macgregor SA, Lee A.-L. Chem. Eur. J. 2014; 20: 11540
    • 7a Babu G, Perumal PT. Aldrichimica Acta 2000; 33: 16
    • 7b Yadav JS, Antony A, George J, Subba Reddy BV. Eur. J. Org. Chem. 2010; 591
    • 7c Loh T.-P, Chua G.-L. Chem. Commun. 2006; 2739
    • 7d Podlech J, Maier TC. Synthesis 2003; 633
    • 7e Singh MS, Raghuvanshi K. Tetrahedron 2012; 68: 8683
  • 8 Webster S, Young PC, Barker G, Rosair GM, Lee AL. J. Org. Chem. 2015; 80: 1703
  • 9 For In(III) versus Au(I) studies in hydroarylations, see: Kumar A, Li ZH, Sharma SK, Parmar VS, Van der Eycken EV. Chem. Commun. 2013; 49: 6803
  • 10 Mézailles N, Ricard L, Gagosz F. Org. Lett. 2005; 7: 4133
  • 11 Nieto-Oberhuber C, López S, Muñoz MP, Cárdenas DJ, Buñuel E, Nevado C, Echavarren AM. Angew. Chem. Int. Ed. 2005; 44: 6146
    • 12a Young PC, Green SL. J, Rosair GM, Lee A.-L. Dalton Trans. 2013; 42: 9645
    • 12b Mudd RJ, Young PC, Jordan-Hore JA, Rosair GM, Lee A.-L. J. Org. Chem. 2012; 77: 7633
  • 13 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
  • 14 S-(3,3-Dicyclohexylprop-2-en-1-yl) Benzenecarbothioate (3bc); Typical Procedure A solution of allylic alcohol 1b (221 mg, 1.0 mmol, 1 equiv) in CHCl3 (1.0 mL) was added to a vial containing InCl3 (10 mg, 5 mol%), thioacid 2c (130 μL 1.1 mmol, 1.1 equiv), and CHCl3 (8 mL). The solution was washed in with a further portion of CHCl3 (1 mL), and the mixture was stirred at 50 °C for 2 h. Purification by column chromatography [silica gel, hexane–Et2O (7:1)] gave a colorless oil; yield: 332 mg (97%, 0.969 mmol); Rf = 0.76 (hexane–Et2O, 3:1). IR: 2922, 2849 (C–H), 1660 (C=O), 1596, 1581, 1447 (C–C Ar) cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.95–7.98 (m, 2 H, Ar-H), 7.53–7.58 (m, 1 H, Ar-H), 7.41–7.46 (m, 2 H, Ar-H), 5.27 (t, J = 8.1 Hz, 1 H, C=CHCH2), 3.81 (d, J = 8.1 Hz, 2 H, C=CHCH 2), 2.45–2.54 (m, 1 H, alkyl-H), 1.87–1.85 (m, 1 H, alkyl-H), 1.50–1.80 (m, 10 H, alkyl-H), 1.08–1.40 (m, 10 H, alkyl-H). 13C NMR (100.6 MHz, CDCl3): δ = 192.5 (C), 155.7 (C), 137.4 (C), 133.3 (CH), 128.7 (CH), 127.3 (CH), 116.0 (CH), 41.1 (CH), 40.7 (CH), 34.9 (CH2), 31.1 (CH2), 27.2 (CH2), 27.1 (CH2), 26.7 (CH2), 26.4 (CH2), 26.3 (CH2). HRMS (APCI): m/z [M + H]+ calcd for C22H31OS: 343.2090; found: 343.2087.
  • 15 We used 2h instead of 2c as a nucleophile in these cases to permit more successful separation of the closely eluting products (3, 7, and side products), which had to be isolated by preparative TLC.
    • 16a Zhuo L.-G, Zhang J.-J, Yu Z.-X. J. Org. Chem. 2012; 77: 8527
    • 16b Zhuo L.-G, Zhang J.-J, Yu Z.-X. J. Org. Chem. 2014; 79: 3809
    • 16c Huang G, Cheng B, Xu L, Li Y, Xia Y. Chem. Eur. J. 2012; 18: 5401
  • 17 See also: Michelet B, Colard-Itté J.-R, Thiery G, Guillot R, Bour C, Gandon V. Chem. Commun. 2015; 51: 7401
  • 18 See ref. 5a for control experiments proving that the reaction is not catalyzed by Brønsted acid, and ref. 5d for detailed mechanistic investigations.