Synthesis 2016; 48(03): 329-339
DOI: 10.1055/s-0035-1560536
short review
© Georg Thieme Verlag Stuttgart · New York

Peroxide: A Novel Methylating Reagent

Qiang Dai
School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China
,
Yan Jiang
School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China
,
Jin-Tao Yu
School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China
,
Jiang Cheng*
School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 13 August 2015

Accepted after revision: 13 October 2015

Publication Date:
13 November 2015 (online)


Abstract

Methylation is an important transformation in organic chemistry. Methods for methylation in industry and academia still frequently employ hazardous and toxic reagents, such as diazomethane, dimethyl carbonate, methyl iodide, and dimethyl sulfate. From the point of view of sustainable and environmentally friendly chemistry, much effort has been devoted to the discovery and development of alternative methylating reagents. A particularly attractive new methyl source that is attracting attention is derived from the cleavage of peroxides. This short review summarizes recent important developments using peroxides as versatile methylating reagents, including direct methylation and sequential methylation together with other functionalization processes. The corresponding reaction mechanisms are also discussed.

1 Introduction

2 Direct Methylation

2.1 Methylation of C–H Bonds

2.2 Methylation of N–H Bonds

2.3 Methylation of O–H Bonds

3 Methylation together with Other Functionalizations

3.1 Oxidation and Methylation

3.2 Decarboxylative Methylation

3.3 Methylation and Cyclization

4 Conclusions and Perspectives

 
  • References


    • For reviews, see:
    • 1a Schoenherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
    • 1b Barreiro EJ, Kummerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215

    • For recent examples of the α-methylation of ketones, see:
    • 1c Chan LK. M, Poole DL, Shen D, Healy MP, Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
    • 1d Li Y, Xue D, Lu W, Wang C, Liu Z.-T, Xiao J. Org. Lett. 2014; 16: 66
    • 1e Leung CS, Leung SS. F, Tirado-Rives J, Jorgensen WL. J. Med. Chem. 2012; 55: 4489
    • 2a Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294
    • 2b Xu Z, Xiang B, Sun P. RSC Adv. 2013; 3: 1679
    • 3a Zhou W, Wang L, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7094
    • 3b Tsuchiya D, Kawagoe Y, Moriyama K, Togo H. Org. Lett. 2013; 15: 4194
    • 3c Toland WG. J. Org. Chem. 1962; 27: 869
    • 3d For reviews, see: Lucke B, Narayana KV, Martin A, Jhnisch K. Adv. Synth. Catal. 2004; 346: 1407 ; and references cited therein
  • 4 Wang Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 7250
    • 5a Hirashima S.-I, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2010; 12: 3645
    • 5b Liu H, Chen G, Jiang H, Li Y, Luque R. ChemSusChem 2012; 5: 1892
    • 5c Rout SK, Guin S, Banerjee A, Khatun N, Gogoi A, Patel BK. Org. Lett. 2013; 15: 4106
    • 5d Liu H, Shi G, Pan S, Jiang Y, Zhang Y. Org. Lett. 2013; 15: 4098
    • 5e Jiang H, Chen H, Wang A, Liu X. Chem. Commun. 2010; 46: 7259
    • 5f Feng J, Liang S, Chen S.-Y, Zhang J, Fu S.-S, Yu X.-Q. Adv. Synth. Catal. 2012; 354: 1287
    • 5g Zhang S, Luo F, Wang W, Jia X, Hu M, Cheng J. Tetrahedron Lett. 2010; 51: 3317
    • 6a Hirai N, Sawatari N, Nakamura N, Sakaguchi S, Ishii Y. J. Org. Chem. 2003; 68: 6587
    • 6b Lu T, Mao Y, Yao K, Xu J, Lu M. Catal. Commun. 2012; 27: 124
    • 6c Bandyopadhyay R, Biswas S, Bhattacharyya R, Guha S, Mukherjee AK. Chem. Commun. 1999; 1627
    • 7a Park J, Lee Y.-M, Nam W, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5052
    • 7b Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F. Angew. Chem. Int. Ed. 2011; 50: 10716
    • 7c Wang Z, Lie F, Lim E, Li K, Li Z. Adv. Synth. Catal. 2009; 351: 1849
    • 8a Delaude L, Laszlo P. J. Org. Chem. 1990; 55: 5260
    • 8b Kharasch MS, Brown HC. J. Am. Chem. Soc. 1939; 61: 2142
    • 8c Shaw H, Perlmutter HD, Gu C, Arco SD, Quibuyen TO. J. Org. Chem. 1997; 62: 236
    • 8d Shibatomi K, Zhang Y, Yamamoto H. Chem. Asian J. 2008; 3: 1581

      For selected applications, see:
    • 9a Johnstone RA. W, Rose ME. Tetrahedron 1979; 35: 2169
    • 9b Ahmad AR, Mehta LK, Parrick J. Tetrahedron 1995; 51: 12899
    • 9c Basak A, Nayak MK, Chakraborti AK. Tetrahedron Lett. 1998; 39: 4883
    • 9d Shieh W.-C, Dell S, Repic O. Org. Lett. 2001; 3: 4279
  • 10 For reviews, see: Yan G, Borah AJ, Wang L, Yang M. Adv. Synth. Catal. 2015; 357: 1333
    • 11a Brown SS, Stutz J. Chem. Soc. Rev. 2012; 41: 6405
    • 11b Tzirakis MD, Orfanopoulos M. Chem. Rev. 2013; 113: 5262
    • 11c Dénès F, Schiesser CH, Renaud P. Chem. Soc. Rev. 2013; 42: 7900

      For reviews on CDC reactions, see:
    • 12a Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 12b Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 12c Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 12d Yoo WJ, Li CJ. Top. Curr. Chem. 2010; 292: 281
    • 12e Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 12f Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 12g Jones KM, Klussmann M. Synlett 2012; 23: 159
  • 13 Zady MF, Wong JL. J. Am. Chem. Soc. 1977; 99: 5096
  • 14 Zhang Y, Feng J, Li C.-J. J. Am. Chem. Soc. 2008; 130: 2900
  • 15 DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
    • 16a Snieckus V. Chem. Rev. 1990; 90: 879
    • 16b Whisler MC, Snieckus V, Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
    • 16c Haag B, Mosrin M, Ila H, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 17a Tomooka K, Wang L, Okazaki F, Nakai T. Tetrahedron Lett. 2000; 41: 6121
    • 17b Chen X, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 12634
    • 17c Zhang SY, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 18a González DF, Brand JP, Waser J. Chem. Eur. J. 2010; 16: 9457
    • 18b He Z, Li H, Li Z. J. Org. Chem. 2010; 75: 4636
    • 18c Ohkuma T, Sandoval CA, Srinivasan R, Lin Q, Wei Y, Muniz K, Noyori R. J. Am. Chem. Soc. 2005; 127: 8288
    • 18d Smith AM. R, Rzepa HS, White AJ. P, Billen D, Hii KK. J. Org. Chem. 2010; 75: 3085
    • 18e Tona M, Sanchez-Baeza F, Messeguer A. Tetrahedron 1994; 50: 8117
  • 19 Guo S, Wang Q, Jiang Y, Yu J.-T. J. Org. Chem. 2014; 79: 11285
    • 20a Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP. FASEB J. 1996; 10: 471
    • 20b Zhang Q, van der Donk WA, Liu W. Acc. Chem. Res. 2012; 45: 555
    • 20c Chatterjee J, Rechenmacher F, Kessler H. Angew. Chem. Int. Ed. 2013; 52: 254
  • 21 Xia Q, Liu X, Zhang Y, Chen C, Chen W. Org. Lett. 2013; 15: 3326
  • 22 Teng F, Cheng J, Yu J.-T. Org. Biomol. Chem. 2015; 13: 9934
  • 23 Zhu Y, Yan H, Lu L, Liu D, Rong G, Mao J. J. Org. Chem. 2013; 78: 9898
  • 24 Rong G, Liu D, Lu L, Yan H, Zheng Y, Chen J, Mao J. Tetrahedron 2014; 70: 5033

    • For some recent reviews on the difunctionalization of alkenes, see:
    • 25a Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 25b Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
    • 25c Jacques B, Muinz K In Catalyzed Carbon–Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2010: 119-135
    • 25d Chemler SR. Org. Biomol. Chem. 2009; 7: 3009
    • 25e Shylesh S, Jia M, Thiel WR. Eur. J. Inorg. Chem. 2010; 4395
    • 25f Huang S.-X, Ding K. Angew. Chem. Int. Ed. 2011; 50: 7734
    • 25g Muniz K, Martinez C. J. Org. Chem. 2013; 78: 2168
    • 25h Chemler SR, Bovino MT. ACS Catal. 2013; 3: 1076
    • 26a Wang A, Jiang H, Chen H. J. Am. Chem. Soc. 2009; 131: 3846
    • 26b Li Y, Song D, Dong VM. J. Am. Chem. Soc. 2008; 130: 2962
    • 26c Rawling MJ, Tomkinson NC. O. Org. Biomol. Chem. 2013; 11: 1434
    • 26d Giglio BC, Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
    • 26e Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 26f Bataille CJ. R, Donohoe TJ. Chem. Soc. Rev. 2011; 40: 114
    • 27a Streuff J, Hovelmann CH, Nieger M, Muniz K. J. Am. Chem. Soc. 2005; 127: 14586
    • 27b Muniz K. J. Am. Chem. Soc. 2007; 129: 14542
    • 27c Sibbald PA, Michael FE. Org. Lett. 2009; 11: 1147
    • 27d Iglesias A, Perez E, Muniz K. Angew. Chem. Int. Ed. 2010; 49: 8109
    • 28a Muniz K. Chem. Soc. Rev. 2004; 33: 166
    • 28b Liu G, Stahl SS. J. Am. Chem. Soc. 2006; 128: 7179
    • 28c Desai LV, Sanford MS. Angew. Chem. Int. Ed. 2007; 46: 5737
    • 29a Tong X, Beller M, Tse MK. J. Am. Chem. Soc. 2007; 129: 4906
    • 29b Welbes LL, Lyons TW, Cychosz KA, Sanford MS. J. Am. Chem. Soc. 2007; 129: 5836
    • 29c He Y.-T, Li L.-H, Yang Y.-F, Zhou Z.-Z, Hua H.-L, Liu X.-Y, Liang Y.-M. Org. Lett. 2014; 16: 270; and references therein
    • 29d Urkalan KB, Sigman MS. Angew. Chem. Int. Ed. 2009; 48: 314 ; and references therein
  • 30 Dai Q, Yu J, Jiang Y, Guo S, Yang H, Cheng J. Chem. Commun. 2014; 50: 3865
  • 31 Fan J, Zhou M, Liu Y, Wei W, Ouyang X, Song R, Li J.-H. Synlett 2014; 25: 65
  • 32 Dai Q, Yu J.-T, Feng X, Jiang Y, Yang H, Cheng J. Adv. Synth. Catal. 2014; 356: 3341
  • 33 Bao Y, Yan Y, Xu K, Su J, Zha Z, Wang Z. J. Org. Chem. 2015; 80: 4736
    • 34a Zhang Z, Su J, Zha Z, Wang Z. Chem. Eur. J. 2013; 19: 17711
    • 34b Azman NA. M, Peiró S, Fajarí L, Julià L, Almajano MP. J. Agric. Food Chem. 2014; 62: 5743