Synlett 2016; 27(02): 225-230
DOI: 10.1055/s-0035-1560510
letter
© Georg Thieme Verlag Stuttgart · New York

Reaction of Bromoacetyl and Sulfhydryl Groups: Efficient Synthesis of Aromatic Oligoamides Consisting of Benzene-1,3,5-tricarboxamide Units

Bao Luan
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: jinzhu@cioc.ac.cn
b   Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Qingfei Huang
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: jinzhu@cioc.ac.cn
,
Lei Wang
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: jinzhu@cioc.ac.cn
,
Jingen Deng
c   West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
,
Menglan Lv
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: jinzhu@cioc.ac.cn
,
Qiwei Wang*
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: jinzhu@cioc.ac.cn
,
Jin Zhu*
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: jinzhu@cioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 31 August 2015

Accepted after revision: 20 September 2015

Publication Date:
30 October 2015 (online)


Abstract

A series of aromatic oligoamides consisting of benzene-1,3,5-tricarboxamide (BTA) residues linked by thioether bonds were designed and synthesized based on the highly efficient and specific reaction between sulfhydryl and bromoacetyl groups. Initial assessment of the folding of these oligoamides with circular dichroism (CD) spectroscopy showed that these oligoamides could fold into a helical conformation.

Supporting Information

 
  • References and Notes

    • 1a Brunsveld L, Schenning AP, Broeren MA, Janssen HM, Vekemans JA, Meijer EW. Chem. Lett. 2000; 292
    • 1b Kristiansen PM, Gress A, Smith P, Hanft D, Schmidt H.-W. Polymer 2006; 47: 249
    • 1c Roosma J, Mes T, Leclère P, Palmans AR, Meijer EW. J. Am. Chem. Soc. 2008; 130: 1120
    • 1d Smulders MM, Filot IA, Leenders JM, van der Schoot P, Palmans AR, Schenning AP, Meijer EW. J. Am. Chem. Soc. 2009; 132: 611
    • 1e Stals PJ, Haveman JF, Palmans AR, Schenning AP. J. Chem. Educ. 2009; 86: 230
    • 1f Yang Y, Xue M, Xiang J, Chen C. J. Am. Chem. Soc. 2009; 131: 12657
    • 1g Stals PJ, Smulders MM, Martín-Rapún R, Palmans AR, Meijer EW. Chem. Eur. J. 2009; 15: 2071
    • 1h Filot IA, Palmans AR, Hilbers PA, van Santen RA, Pidko EA, de Greef TF. J. Phys. Chem. B 2010; 114: 13667
    • 1i Stals PJ, Everts JC, de Bruijn R, Filot IA, Smulders MM, Martin-Rapun R, Pidko EA, de Greef TF, Palmans AR, Meijer EW. Chemistry 2010; 16: 810
    • 1j Cantekin S, Balkenende DW, Smulders MM, Palmans AR, Meijer EW. Nat. Chem. 2011; 3: 42
    • 1k Terashima T, Mes T, De Greef TF, Gillissen MA, Besenius P, Palmans AR, Meijer EW. J. Am. Chem. Soc. 2011; 133: 4742
    • 1l Cantekin S, Nakano Y, Everts JC, van der Schoot P, Meijer EW, Palmans AR. Chem. Commun. 2012; 48: 3803
    • 1m Veling N, van Hameren R, van Buul AM, Rowan AE, Nolte RJ, Elemans JA. Chem. Commun. 2012; 48: 4371
    • 1n Garcia F, Korevaar PA, Verlee A, Meijer EW, Palmans AR, Sanchez L. Chem. Commun. 2013; 49: 8674
    • 1o Yang Y, Huang F, Chen C, Xia M, Cai Q, Qian F, Xiang J. Sci. Rep. 2013; 3: 1059
    • 1p Gillissen MA. J, Terashima T, Meijer EW, Palmans AR. A, Voets IK. Macromolecules 2013; 46: 4120
    • 1q Narayan B, Kulkarni C, George SJ. J. Mater. Chem. C 2013; 1: 626
    • 1r Gillissen MA, Koenigs MM, Spiering JJ, Vekemans JA, Palmans AR, Voets IK, Meijer EW. J. Am. Chem. Soc. 2014; 136: 336
    • 2a Ryu SY, Kim S, Seo J, Kim Y.-W, Kwon O.-H, Jang D.-J, Park SY. Chem. Commun. 2004; 70
    • 2b Danila I, Riobé F, Puigmartí-Luis J, Del Pino ÁP, Wallis JD, Amabilino DB, Avarvari N. J. Mater. Chem. 2009; 19: 4495
    • 2c Veld MA. J, Haveman D, Palmans AR. A, Meijer EW. Soft Matter 2011; 7: 524
    • 2d Cantekin S, de Greef TF, Palmans AR. Chem. Soc. Rev. 2012; 41: 6125
    • 2e Aparicio F, García F, Sánchez L. Chem. Eur. J. 2013; 19: 3239
    • 2f Howe RC, Smalley AP, Guttenplan AP, Doggett MW, Eddleston MD, Tan JC, Lloyd GO. Chem. Commun. 2013; 49: 4268
    • 2g Leung M.-k, Lin Y.-S, Lee C.-C, Chang C.-C, Wang Y.-X, Kuo C.-P, Singh N, Lin K.-R, Hu C.-W, Tseng C.-Y, Ho K.-C. RSC Adv. 2013; 3: 22219
    • 2h Raynal M, Portier F, van Leeuwen PW, Bouteiller L. J. Am. Chem. Soc. 2013; 135: 17687
    • 2i Bejagam KK, Fiorin G, Klein ML, Balasubramanian S. J. Phys. Chem. B 2014; 118: 5218
    • 2j Hosono N, Pitet LM, Palmans AR. A, Meijer EW. Polym. Chem. 2014; 5: 1463
    • 2k Hosono N, Stals PJ, Palmans AR, Meijer EW. Chem Asian J. 2014; 9: 1099
    • 2l Leenders CM, Mes T, Baker MB, Koenigs MM, Besenius P, Palmans AR, Meijer EW. Mater. Horiz. 2014; 1: 116
    • 2m Stals PJ, Gillissen MA, Paffen TF, de Greef TF, Lindner P, Meijer EW, Palmans AR, Voets IK. Macromolecules 2014; 47: 2947
    • 3a Lightfoot MP, Mair FS, Pritchard RG, Warren JE. Chem. Commun. 1999; 1945
    • 3b Wilson AJ, Masuda M, Sijbesma RP, Meijer EW. Angew. Chem. Int. Ed. 2005; 44: 2275
    • 3c Sakamoto A, Ogata D, Shikata T, Urakawa O, Hanabusa K. Polymer 2006; 47: 956
    • 3d Wilson AJ, van Gestel J, Sijbesma RP, Meijer EW. Chem. Commun. 2006; 4404
    • 3e Fitié CF, Tomatsu I, Byelov D, de Jeu WH, Sijbesma RP. Chem. Mater. 2008; 20: 2394
    • 3f Smulders MM, Schenning AP, Meijer EW. J. Am. Chem. Soc. 2008; 130: 606
    • 3g Demenev A, Eichhorn SH, Taerum T, Perepichka DF, Patwardhan S, Grozema FC, Siebbeles LD, Klenkler R. Chem. Mater. 2010; 22: 1420
  • 4 Klosterman JK, Yamauchi Y, Fujita M. Chem. Soc. Rev. 2009; 38: 1714
    • 5a Breidenbach S, Ohren S, Nieger M, Vogtle F. J. Chem. Soc., Chem. Commun. 1995; 1237
    • 5b Lokey RS, Iverson BL. Nature (London, U.K.) 1995; 375: 303
    • 5c Gabriel GJ, Sorey S, Iverson BL. J. Am. Chem. Soc. 2005; 127: 2637
    • 5d Cao J, Kline M, Chen Z, Luan B, Lv M, Zhang W, Lian C, Wang Q, Huang Q, Wei X, Deng J, Zhu J, Gong B. Chem. Commun. 2012; 48: 11112
  • 6 Zhang W, Horoszewski D, Decatur J, Nuckolls C. J. Am. Chem. Soc. 2003; 125: 4870
  • 7 Chen Z, Urban ND, Gao Y, Zhang W, Deng J, Zhu J, Zeng XC, Gong B. Org. Lett. 2011; 13: 4008
    • 8a Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP, Dick JD, Townsend CA. J. Med. Chem. 2000; 43: 3304
    • 8b Loghmani-Khouzani H, Poorheravi MR, Sadeghi MM, Caggiano L, Jackson RF. Tetrahedron 2008; 64: 7419
    • 8c Gagnon A, Landry S, Coulombe R, Jakalian A, Guse I, Thavonekham B, Bonneau PR, Yoakim C, Simoneau B. Bioorg. Med. Chem. Lett. 2009; 19: 1199
    • 8d Su X, Pradaux-Caggiano F, Thomas MP, Szeto MW, Halem HA, Culler MD, Vicker N, Potter BV. ChemMedChem 2010; 5: 1026
    • 8e Akremi A, Beji M, Baklouti A. Synth. Commun. 2011; 41: 1990
    • 8f Airoldi C, Mourtas S, Cardona F, Zona C, Sironi E, D’Orazio G, Markoutsa E, Nicotra F, Antimisiaris SG, La Ferla B. Eur. J. Med. Chem. 2014; 85: 43
    • 9a Lin P.-C, Ueng S.-H, Tseng M.-C, Ko J.-L, Huang K.-T, Yu S.-C, Adak AK, Chen Y.-J, Lin C.-C. Angew. Chem. Int. Ed. 2006; 45: 4286
    • 9b Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR. J. Am. Chem. Soc. 2007; 129: 11543
    • 9c Peterle T, Leifert A, Timper J, Sologubenko A, Simon U, Mayor M. Chem. Commun. 2008; 3438
    • 9d Lu J.-Y, Riedrich M, Mikyna M, Arndt H.-D. Angew. Chem. Int. Ed. 2009; 48: 8137
    • 9e Fenton JM, Busse M, Rendina LM. Aust. J. Chem. 2015; 68: 576
    • 10a Dolain C, Jiang H, Léger J.-M, Guionneau P, Huc I. J. Am. Chem. Soc. 2005; 127: 12943
    • 10b Hu H.-Y, Xiang J.-F, Yang Y, Chen C.-F. Org. Lett. 2008; 10: 1275
  • 11 Selected Spectroscopic Data Compound 2-1 1H NMR (300 MHz, CDCl3): δ = 0.87–0.94 (m, 6 H), 1.30–1.41 (m, 8 H), 1.57–1.66 (m, 4 H), 4.08–4.22 (m, 2 H), 4.82–4.87 (m, 1 H), 7.37 (d, J = 6.99 Hz, 1 H), 8.96 (m, 2 H), 9.16 (m, 1 H) ppm. Compound 2: 1H NMR (300 MHz, CDCl3): δ = 0.90–0.92 (m, 11 H), 1.25–1.40 (m, 16 H), 1.53 (d, J = 7.5 Hz, 3 H), 1.65–1.72 (m, 6 H), 2.35 (t, J = 7.5 Hz, 4 H), 3.99–4.17 (m, 2 H), 4.67–4.75 (m, 1 H), 7.11 (d, J = 7.2 Hz, 1 H), 7.69 (s, 2 H), 7.78 (s, 2 H), 8.00 (s, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 13.9, 14.0,18.0, 22.4, 22.9, 23.7, 23.8, 25.2, 28.9, 30.3, 30.4, 31.4, 37.5, 38.8, 38.8, 49.0, 68.0, 113.8, 114.0, 135.0, 139.0, 167.0, 172.2, 173.3 ppm. ESI-HRMS: m/z calcd for C30H49N3O5Na [M + Na]+: 554.3570; found: 554.3583. Compound 3-1 Compound 3-1 was prepared by controlling the molar ratios of 3-(trithylthio)propanoic acid and diamine 2-2 as 2.4 in 65% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 0.80–0.84 (m, 6 H), 1.21–1.30 (m, 8 H), 1.39 (d, J = 7.26 Hz, 3 H), 1.52 (m, 1 H), 2.37–2.50 (m, 8 H), 3.91–4.02 (m, 2 H), 4.43 (t, J = 7.08 Hz, 1 H), 7.06–7.34 (m, 30 H), 7.68 (d, J = 0.99 Hz, 2 H), 8.10 (s, 1 H), 8.75 (d, J = 6.78 Hz, 1 H), 10.10 (s, 2 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 10.8, 10.9, 13.9, 16.6, 22.4, 23.1, 23.2, 27.3, 28.3, 29.7, 29.8, 35.1,38.2, 48.5, 66.1, 66.3, 112.7, 113.4, 126.7, 128.0, 129.1, 135.4, 139.2, 144.4, 166.7, 169.3, 172.7 ppm. ESI-HRMS: m/z calcd for C62H65N3O5S2Na [M + Na]+: 1018.4263; found: 1018.4263. Compound 4-1 Compound 4-1 was prepared by controlling the molar ratios of 3-(trithylthio)propanoic acid and diamine 2-2 as 1.2 in 50% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 0.78–0.83 (m, 6 H), 1.20–1.26 (m, 8 H), 1.33 (d, J = 7.26 Hz, 3 H), 1.50 (m, 1 H), 2.29–2.35 (m, 4 H), 3.85–4.02 (m, 2 H), 4.34 (t, J = 7.08 Hz, 1 H), 5.25 (s, 2 H), 6.65 (s, 1 H), 7.00 (s, 1 H), 7.05 (s, 1 H), 7.23–7.32 (m, 15 H), 8.50 (d, J = 6.54 Hz, 1 H), 9.74 (s, 1 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 10.8, 13.9, 16.7, 22.4, 23.1, 27.5, 28.4, 29.8, 30.4, 35.1, 38.2, 48.4, 66.2, 106.7, 107.4, 108.3, 126.7, 128.0, 129.1, 135.5, 139.5, 144.38, 144.47. 148.9, 167.4, 168.9, 172.8 ppm. ESI-HRMS: m/z calcd for C40H47N3O4SNa [M + Na]+: 688.3185; found: 688.3179. Compound 4 1H NMR (300 MHz, DMSO-d 6): δ = 0.80–0.84 (m, 6 H), 1.21–1.30 (m, 8 H), 1.38 (d, J = 7.26 Hz, 3 H), 1.50–1.52 (m, 1 H), 2.34–2.42 (m, 4 H), 3.92–4.04 (m, 4 H), 4.41 (m, 1 H), 7.23–7.37 (m, 15 H), 7.68 (s, 2 H), 8.09 (s, 1 H), 8.79 (d, J = 6.90 Hz, 1 H), 10.13 (s, 1 H), 10.54 (s, 1 H) ppm. 13C NMR (75MHz, DMSO-d 6): δ = 10.8, 13.9, 16.6, 22.4, 23.1, 27.3, 28.3, 29.8, 38.2, 40.1, 48.5, 66.1, 66.3, 112.9, 113.5, 130.0, 126.7, 128.0, 129.1, 135.5, 138.7, 144.4, 164.8, 166.5, 169.3, 172.6 ppm. ESI-HRMS: m/z calcd for C42H48BrN3O5SNa [M + Na]+: 808.2396; found: 808.2374. Oligoamide 1a Light yellow powder (540 mg) in 70% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 0.80–0.84 (m, 18 H), 1.21–1.30 (m, 24 H), 1.38 (d, J = 7.17 Hz, 9 H), 1.50–1.52 (m, 3 H), 2.35–2.42 (m, 8 H), 2.69–2.71 (m, 4 H), 2.92–2.94 (m, 4 H), 3.38 (s, 4 H), 3.92–4.01 (m, 6 H), 4.39–4.44 (m, 3 H), 7.24–7.33 (m, 30 H), 7.68–7.70 (m, 6 H), 8.11–8.13 (m, 3 H), 8.75–8.77 (m, 3 H), 10.10 (s, 2 H), 10.16 (s, 2 H), 10.26 (s, 2 H). 13C NMR (75 MHz, DMSO-d 6): δ = 10.9, 13.9, 16.7, 22.4, 23.2, 27.4, 27.7, 28.3,29.8, 29.9, 35.1, 36.3, 38.3, 48.6, 66.2, 66.3, 112.7, 113.4, 126.8, 128.0, 129.1, 135.5, 139.3, 144.4, 166.7, 168.2, 169.3, 169.6, 172.7 ppm. ESI-HRMS: m/z calcd for C108H130N9O15S4Na [M + Na]+: 1943.8467; found: 1943.8134. Oligoamide 1b Using 1a′ as starting material, light yellow powder (502 mg) in 85% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 0.79–0.84 (m, 30 H), 1.21–1.30 (m, 40 H), 1.37 (d, J = 7.41 Hz, 15 H), 1.52 (m, 5 H), 2.34–2.39 (m, 8 H), 2.66–2.70 (m, 8 H), 2.91–2.93 (m, 8 H), 3.34 (s, 8 H), 3.99–4.01 (m, 10 H), 4.41–4.43 (m, 5 H), 7.22–7.34 (m, 30 H), 7.67–7.70 (m, 10 H), 8.10–8.13 (m, 5 H), 8.73–8.75 (m, 5 H), 10.08–10.25 (m, 10 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 10.8, 10.9, 13.9, 16.7, 22.4, 23.2, 27.6, 28.3, 29.8, 29.9, 36.2, 38.3, 48.5, 66.2, 66.3, 112.7, 113.4, 113.6, 126.7, 128.0, 129.1, 135.5, 139.2, 139.3, 144.4, 166.7, 168,2, 169.3, 169.6, 169.7, 172.7 ppm. ESI-HRMS: m/z calcd for C154H196N15O25S6Na2 [M + 2Na – H]+: 2893.2646; found: 2893.2623. Oligoamide 1c Using 1b′ as starting material, light yellow powder (301 mg) in 63% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 0.80–0.84 (m, 42 H), 1.12–1.30 (m, 56 H), 1.38 (d, J = 7.20 Hz, 21 H), 1.51 (m, 7 H), 2.34–2.40 (m, 8 H), 2.66–2.71 (m, 12 H), 2.91–2.96 (m, 12 H), 3.35 (s, 12 H), 3.92–4.01 (m, 14 H), 4.39–4.41 (m, 7 H), 7.22–7.36 (m, 30 H), 7.67–7.70 (m, 14 H), 8.10–8.13 (m, 7 H), 8.75–8.78 (m, 7 H), 10.09–10.26 (m, 14 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 10.8, 10.9, 13.9, 16.7, 22.4, 23.2, 23.3, 27.3, 27.6, 28.4, 29.8, 29.9, 35.1, 35.4, 36.2, 38.2, 38.3, 48.6, 66.2, 66.3, 112.7, 113.4, 113.6, 126.8, 128.1, 129.1, 135.5, 139.2, 139.3, 144.4, 166.8, 168,3, 169.3, 169.6, 169.7, 172.7 ppm. ESI-HRMS: m/z calcd for C200H262N21O35S8KNa [M + Na + K – H]+: m/z 3835.6668; found: 3835.6474. Oligoamide 1d Using 1c′ as starting material, light yellow powder (43 mg) in 77% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 0.80–0.84 (m, 54 H), 1.12–1.30 (m, 72 H), 1.38 (d, J = 7.23 Hz, 27 H), 1.50–1.52 (m, 9 H), 2.34–2.40 (m, 8 H), 2.66–2.71 (m, 16 H), 2.92–2.96 (m, 16 H), 3.35 (s, 16 H), 3.92–4.01 (m, 18 H), 4.39–4.44 (m, 9 H), 7.24–7.37 (m, 30 H), 7.67–7.71 (m, 18 H), 8.10–8.13 (m, 9 H), 8.75–8.78 (m, 9 H), 10.1–10.3 (m, 18 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 11.2, 11.3, 14.3, 17.1, 22.8, 23.6, 23.7, 27.7, 28.1, 28.7, 28.8, 30.2, 30.3, 35.6, 35.8, 36.7, 38.6, 38.7, 49.0, 66.6, 66.8, 113.2, 113.8, 114.1, 127.2, 128.5, 129.5, 135.9, 139.6, 139.7, 144.9, 167.2, 168.6, 169.7, 170.1, 173.1 ppm. ESI-HRMS: m/z calcd for C247H329Cl2N27O45S10 [M + CH2Cl2 – 2H]2–: 2392.555; found: 2392.8. Representative Procedure for the Preparation of Oligoamide 1a The solution of compound 4 (802 mg, 1.02 mmol) dissolved in CH2Cl2 (10 mL) was added dropwise to the ice-cold mixture of compound 3 (209 mg, 0.409 mmol) and Et3N(0.14 mL, 1.02 mmol) in CH2Cl2 (20 mL). The mixture was allowed to warm to r.t. and kept at this temperature overnight. The resulting mixture was washed with 1 M HCl solution (30 mL), brine (30 mL), and then dried over anhydrous Na2SO4. After filtration and concentration the crude product was purified by column chromatography (3 vol% MeOH in CH2Cl2, Rf = 0.1) to afford pure compound 1a. Oligoamides 1bd could be prepared using the same method described as 1a. Representative Procedure for the Preparation of Oligoamide 1a′ The solution of TFA (0.31 mL, 4.16 mmol) in CH2Cl2 (10 mL) was added dropwise to the ice-cold mixture of compound 1a (400 mg, 0.208 mmol) and triethylsilane (0.33 mL, 2.08 mmol) in CH2Cl2 (20 mL) over 15 min. The mixture was allowed to warm to r.t. and kept at this temperature for 1 h. After concentration, the crude mixture was purified by flash column chromatography (5% v/v MeOH in CH2Cl2, Rf = 0.2) to give compound 1a′. Oligoamides 1b′ and 1c′ could be prepared using the same method described as 1a′. Oligoamide 1a′ White solid; yield: 293 mg (98%). Oligoamide 1b′ White solid; yield: 289 mg (97%). Oligoamide 1c′ White solid; yield: 38 mg (97%).