Synlett 2016; 27(02): 282-286
DOI: 10.1055/s-0035-1560506
letter
© Georg Thieme Verlag Stuttgart · New York

Brønsted Acid or Lewis Acid Catalyzed [3+3] Cycloaddition of Azomethine Imines with N-Benzyl Azomethine Ylide: A Facile Access to Bicyclic N-Heterocycles

Shuo-ning Li
a   Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road NO.95, Zhengzhou 450002, P. R. of China
,
Bin Yu
c   School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. of China
,
Jia Liu*
a   Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road NO.95, Zhengzhou 450002, P. R. of China
b   Modern Experimental Technology Center (Management), Henan Agricultural University, Wenhua Road NO.95, Zhengzhou 450002, P. R. of China   Email: risongna@163.com
,
Hong-lian Li
a   Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road NO.95, Zhengzhou 450002, P. R. of China
,
Risong Na*
a   Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road NO.95, Zhengzhou 450002, P. R. of China
b   Modern Experimental Technology Center (Management), Henan Agricultural University, Wenhua Road NO.95, Zhengzhou 450002, P. R. of China   Email: risongna@163.com
› Author Affiliations
Further Information

Publication History

Received: 08 August 2015

Accepted after revison: 20 September 2015

Publication Date:
30 October 2015 (online)


Abstract

1,3-Dipolar cycloaddition reactions are one of the most important methods to obtain diverse heterocycles with novel skeletons. We herein report the Brønsted acid or Lewis acid catalyzed [3+3] cycloaddition of azomethine imines with nonstabilized azomethine ylide generated in situ from an N-benzyl precursor, providing a clean and facile access to diverse bicyclic N-heterocycles in moderate to good yields for further biological testing. Also, the protocol developed achieved the formation of C–C and C–N bonds simultaneously in a single step.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Li M, Zhao B.-X. Eur. J. Med. Chem. 2014; 85: 311
    • 1b Fustero S, Sanchez-Rosello M, Barrio P, Simon-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 1c Yet L. Prog. Heterocycl. Chem. 2013; 25: 217

      For some selected examples of bicyclic N-heterocycles, see:
    • 2a Muehlebach M, Cederbaum F, Cornes D, Friedmann AA, Glock J, Hall G, Indolese AF, Kloer DP, Le Goupil G, Maetzke T, Meier H, Schneider R, Stoller A, Szczepanski H, Wendeborn S, Widmer H. Pest Manage. Sci. 2011; 67: 1499
    • 2b Schumacher JN, Green CR, Best FW, Newell MP. J. Agric. Food Chem. 1977; 25: 310
    • 2c Badran MM, Ismail MA. H, Abdu N, Abdel-Hakeem M. Alexandria J. Pharm. Sci. 1999; 13: 101
    • 2d Song HY, Cho YR, Lee DY, Park HS, Baek SY, Chae SE, Cho SH, Kim YO, Lee HS, Park JH, Park TG, Woo SH, Kim YJ. KR 200864178, 2009 ; Chem. Abstr. 2009, 151, 626744
    • 2e Kamata M, Yamashita T, Kina A, Tawada M, Endo S, Mizukami A, Sasaki M, Tani A, Nakano Y, Watanabe Y, Furuyama N, Funami M, Amano N, Fukatsu K. Bioorg. Med. Chem. Lett. 2012; 22: 4769
    • 2f Schatz F, Wagner-Jauregg T. Helv. Chim. Acta 1968; 51: 1919
    • 2g Zhu L, Younes AH, Yuan Z, Clark RJ. J. Photochem. Photobiol., A 2015; 311: 1
    • 2h Zhu L, Yuan Z, Simmons JT, Sreenath K. RSC Adv. 2014; 4: 20398
    • 2i Kosower EM, Giniger R, Radkowsky A, Hebel D, Shusterman A. J. Phys. Chem. 1986; 90: 5552
    • 2j Jungheim LN, Sigmund SK, Fisher JW. Tetrahedron Lett. 1987; 28: 285
    • 2k Ternansky RJ, Draheim SE. Tetrahedron Lett. 1990; 31: 2805

      For some selected examples of [3+2] cycloaddtion, see:
    • 3a Greenwald RB, Taylor EC. J. Am. Chem. Soc. 1968; 90: 5273
    • 3b Chuang T.-H, Sharpless KB. Helv. Chim. Acta 2000; 83: 1734
    • 3c Shintani R, Fu GC. J. Am. Chem. Soc. 2003; 125: 10778
    • 3d Pezdirc L, Jovanovski V, Bevk D, Jakse R, Pirc S, Meden A, Stanovnik B, Svete J. Tetrahedron 2005; 61: 3977
    • 3e Suarez A, Downey CW, Fu GC. J. Am. Chem. Soc. 2005; 127: 11244
    • 3f Chen W, Yuan X.-H, Li R, Du W, Wu Y, Ding L.-S, Chen Y.-C. Adv. Synth. Catal. 2006; 348: 1818
    • 3g Chen W, Du W, Duan Y.-Z, Wu Y, Yang S.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2007; 46: 7667
    • 3h Pezdirc L, Bevk D, Groselj U, Meden A, Stanovnik B, Svete J. J. Comb. Chem. 2007; 9: 717
    • 3i Suga H, Funyu A, Kakehi A. Org. Lett. 2007; 9: 97
    • 3j Kato T, Fujinami S, Ukaji Y, Inomata K. Chem. Lett. 2008; 37: 342
    • 3k Sibi MP, Rane D, Stanley LM, Soeta T. Org. Lett. 2008; 10: 2971
    • 3l Keller M, Sido AS. S, Pale P, Sommer J. Chem. Eur. J. 2009; 15: 2810
    • 3m Oishi T, Yoshimura K, Yamaguchi K, Mizuno N. Chem. Lett. 2010; 39: 1086
    • 3n Tanaka K, Kato T, Fujinami S, Ukaji Y, Inomata K. Chem. Lett. 2010; 39: 1036
    • 3o Tanaka K, Kato T, Ukaji Y, Inomata K. Heterocycles 2010; 80: 887
    • 3p Luo N, Zheng Z, Yu Z. Org. Lett. 2011; 13: 3384
    • 3q Yoshimura K, Oishi T, Yamaguchi K, Mizuno N. Chem. Eur. J. 2011; 17: 3827
    • 3r Imaizumi T, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2012; 134: 20049
    • 3s Zhou W, Li X.-X, Li G.-H, Wu Y, Chen Z. Chem. Commun. 2013; 49: 3552
    • 3t Li Z, Yu H, Liu H, Zhang L, Jiang H, Wang B, Guo H. Chem. Eur. J. 2014; 20: 1731

      For some selected examples of [3+3] cycloaddtion, see:
    • 4a Shintani R, Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
    • 4b Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
    • 4c Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
    • 4d Fang X, Li J, Tao H.-Y, Wang C.-J. Org. Lett. 2013; 15: 5554
    • 4e Guo H, Liu H, Zhu F.-L, Na R, Jiang H, Wu Y, Zhang L, Li Z, Yu H, Wang B, Xiao Y, Hu X.-P, Wang M. Angew. Chem. Int. Ed. 2013; 52: 12641
    • 4f Qian Y, Zavalij PJ, Hu W, Doyle MP. Org. Lett. 2013; 15: 1564
    • 4g Tong M.-C, Chen X, Tao H.-Y, Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 12377
    • 4h Xu X, Qian Y, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2013; 135: 1244
    • 4i Zhu G, Sun W, Wu C, Li G, Hong L, Wang R. Org. Lett. 2013; 15: 4988
    • 4j Du J, Xu X, Li Y, Pan L, Liu Q. Org. Lett. 2014; 16: 4004

      For some selected examples of [4+3] cycloaddtion, see:
    • 5a Na R, Jing C, Xu Q, Jiang H, Wu X, Shi J, Zhong J, Wang M, Benitez D, Tkatchouk E, Goddard WA, Guo H, Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
    • 5b Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
  • 6 For selected examples of [3+2+1] cycloaddition, see: Xu X, Xu X, Zavalij PY, Doyle MP. Chem. Commun. 2013; 49: 2762

    • For selected examples of [3+2] cycloaddition of N-benzyl azomethine ylide, see:
    • 7a Padwa A, Dent W. J. Org. Chem. 1987; 52: 235
    • 7b Kibayashi C, Yamazaki N. Sci. Synth. 2007; 30: 587
    • 7c Kibayashi C, Yamazaki N. Sci. Synth. 2007; 30: 7
    • 7d Terao Y, Kotaki H, Imai N, Achiwa K. Chem. Pharm. Bull. 1985; 33: 2762
    • 7e Terao Y, Kotaki H, Imai N, Achiwa K. Chem. Pharm. Bull. 1985; 33: 896
    • 7f Padwa A, Dent W. Org. Synth. 1989; 67: 133
    • 7g Reed AD, Hegedus LS. J. Org. Chem. 1995; 60: 3787
    • 7h Fray AH, Meyers AI. J. Org. Chem. 1996; 61: 3362
    • 7i Gerlach K, Hoffmann HM. R, Wartchow R. J. Chem. Soc., Perkin Trans. 1 1998; 3867
    • 7j Yu B, Shi X.-J, Qi P.-P, Yu D.-Q, Liu H.-M. J. Steroid Biochem. Mol. Biol. 2014; 141: 121
    • 7k Karlsson S, Hoegberg H.-E. J. Chem. Soc., Perkin Trans. 1 2002; 1076
    • 7l Trost BM, Crawley ML. Chem. Eur. J. 2004; 10: 2237
    • 7m Kotian PL, Lin T.-H, El-Kattan Y, Chand P. Org. Process Res. Dev. 2005; 9: 193
    • 7n Kurkin AV, Sumtsova EA, Yurovskaya MA. Chem. Heterocycl. Compd. 2007; 43: 34
    • 7o Yohannes D, Procko K, Lebel LA, Fox CB, O'Neill BT. Bioorg. Med. Chem. Lett. 2008; 18: 2316
    • 7p Boga SB, Alhassan A.-B, Cooper AB, Shih N.-Y, Doll RJ. Tetrahedron Lett. 2009; 50: 5315
    • 7q Baumann M, Baxendale IR, Kuratli C, Ley SV, Martin RE, Schneider J. ACS Comb. Sci. 2011; 13: 405
    • 7r D’Souza AM, Spiccia N, Basutto J, Jokisz P, Wong LS. M, Meyer AG, Holmes AB, White JM, Ryan JH. Org. Lett. 2011; 13: 486
    • 7s Yarmolchuk VS, Mukan IL, Grygorenko OO, Tolmachev AA, Shishkina SV, Shishkin OV, Komarov IV. J. Org. Chem. 2011; 76: 7010
    • 7t Pandiancherri S, Ryan SJ, Lupton DW. Org. Biomol. Chem. 2012; 10: 7903
    • 7u Cai C, Kang F.-A, Beauchamp DA, Sui Z, Russell RK, Teleha CA. Tetrahedron: Asymmetry 2013; 24: 651
    • 7v Lee S, Diab S, Queval P, Sebban M, Chataigner I, Piettre SR. Chem. Eur. J. 2013; 19: 7181
    • 7w Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2013; 54: 5869
    • 7x Lee S, Chataigner I, Piettre SR. Angew. Chem. Int. Ed. 2011; 50: 472
  • 8 General Procedure for the [3+3] Annulation Reaction of N-Benzyl-Substituted Compound 1 and Azomethine Imines 3 To a solution of azomethine imines 3 (0.02 mmol) and N-benzyl-substituted compound 1 (0.03 mmol, 1.5 equiv) at 0 °C in CH2Cl2 (2 mL) was added acid catalyst (0.002 mmol, 0.1 equiv), the reaction mixture was stirred in refrigerated precision water baths at 10 °C for 72 h (depending on TLC monitor), N-benzyl-substituted compound 1 (0.05 mmol, 2.5 equiv) was added during this period. After the completion of the reaction, the reaction mixture was cooled to 0 °C, and was diluted with sat. NaHCO3 solution. The filtrate was concentrated under vacuum and purified by flash column (hexane–EtOAc, 1:9) to give the product 4.
  • 9 Selected Spectral Data for Compound 4a Yield 71% for TFA-catalyzed reaction [70% yield for Zn(OTf)2-catalyzed reaction]; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.27 (m, 10 H), 4.91 (d, J = 11.3 Hz, 1 H), 3.78–3.68 (m, 4 H), 3.36–3.25 (m, 1 H), 2.96–2.89 (m, 1 H), 2.84–2.75 (m, 1 H), 2.69–2.60 (m, 2 H), 2.50–2.39 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 170.35, 138.03, 137.03, 129.04, 128.75, 128.52, 128.33, 127.74, 127.52, 66.99, 61.58, 58.68, 57.61, 47.96, 30.09. IR (film): νmax = 3029, 2924, 2844, 1695, 1602, 1494, 1453, 1410, 1328, 1280, 1129, 1065, 1027, 929, 979, 758, 100, 633, 569, 529, 498, 466 cm–1. HRMS (MALDI): m/z calcd for C19H22N3O+ [M + H]+: 308.1757; found: 308.1763.