Synthesis 2016; 48(01): 1-17
DOI: 10.1055/s-0035-1560351
review
© Georg Thieme Verlag Stuttgart · New York

3-Sulfolenes and Their Derivatives: Synthesis and Applications

Michael G. Brant
Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada   Email: wulff@uvic.ca
,
Jeremy E. Wulff*
Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada   Email: wulff@uvic.ca
› Author Affiliations
Further Information

Publication History

Received: 03 July 2015

Accepted after revision: 13 August 2015

Publication Date:
05 October 2015 (online)


Abstract

The diverse substitution patterns available to 3-sulfolenes have long made them useful for the preparation of multi-substituted 1,3-diene equivalents. More recently, the 3-sulfolene motif itself (or its reduced sulfolane congener) is finding increasing application as a structural element in the creation of molecules for biological applications. This review describes various methods to afford 3-sulfolene building blocks and their derivatives. Selected applications in synthetic and medicinal chemistry are also discussed.

1 Introduction

2 The Preparation of Monocyclic Sulfolene Building Blocks

2.1 Sulfolenes through Electrophilic Addition

2.1.1 Sulfolenes through Nucleophilic Addition to 4-Bromo-2-sulfolene

2.2 Sulfolenes through Oxidation of a Thiol Precursor

2.3 Sulfolenes through Noble Metal Catalysis

2.4 Sulfolenes through Deprotonation Followed by Alkylation

3 Synthesis of Bicyclic Sulfolenes and Their Derivatives

3.1 Bicyclic Sulfolenes through Alkylation Chemistry

3.2 Heteroaromatic Bicyclic Sulfolenes

3.3 Bicyclic Sulfolenes through Dipolar Cycloaddition

4 The Sulfolane Function in Medicinal Chemistry

5 Conclusion

 
  • References

    • 1a Backer HJ, Blass TA. H. Recl. Trav. Chim. Pays-Bas 1942; 61: 785
    • 1b Isaacs NS, Laila AA. R. J. Chem. Soc., Perkin Trans. 2 1976; 1470
  • 2 Mock WL. J. Am. Chem. Soc. 1966; 88: 2857
    • 3a Nomoto T, Takayama H. Heterocycles 1985; 23: 2913
    • 3b Tso H.-H, Chou T.-S, Lai Y.-L. J. Chin. Chem. Soc. 1989; 36: 367
    • 3c Chou T.-s, Lee S.-J, Yao N.-K. Tetrahedron 1989; 45: 4113
    • 3d Leonard J, Fearnley SP, Finlay MR, Knight JA, Wong G. J. Chem. Soc., Perkin Trans. 1 1994; 2359
    • 3e Subramanian T, Padmakumar R, Bhat SV. Tetrahedron Lett. 1997; 38: 2585
    • 4a Finikova O, Cheprakov A, Beletskaya I, Vinogradov S. Chem. Commun. 2001; 261
    • 4b Vicente MG. H, Tomé AC, Walter A, Cavaleiro JA. S. Tetrahedron Lett. 1997; 38: 3639
    • 5a Ishida H, Asaji H, Hida T, Itoh K, Ohno M. Tetrahedron Lett. 2000; 41: 2153
    • 5b Ishida H, Itoh K, Ito S, Ono N, Ohno M. Synlett 2001; 296
  • 6 Nicolaou KC, Vassilikogiannakis G, Mägerlein W, Kranich R. Chem. Eur. J. 2001; 7: 5359
    • 7a Yamada S, Suzuki T, Takayama H. Tetrahedron Lett. 1981; 22: 3085
    • 7b Yamada S, Suzuki T, Takayama H, Miyamoto K, Matsunaga I, Nawata Y. J. Org. Chem. 1983; 48: 3483
  • 8 Kaneko C, Hayashi R, Fujii H, Yamamoto A. Chem. Pharm. Bull. 1978; 26: 3582
  • 9 Bailey WJ, Cummins EW. J. Am. Chem. Soc. 1954; 76: 1932
  • 10 Clark E. Sulfolane and Sulfones. In Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Inc; New York: 2000
  • 11 Parkhomenko P. Kataliz i Neftekhimiya 2000; 63
    • 12a Aitken RA, Cadogan JI. G, Gosney I. J. Chem. Soc., Perkin Trans. 1 1994; 1983
    • 12b Wong SS. Y, Brant MG, Barr C, Oliver AG, Wulff JE. Beilstein J. Org. Chem. 2013; 9: 1419
    • 12c Mukhamedova LA, Konoplev MV, Makhmutova SF, Buzykin BI, Khairullin VK. Chem. Heterocycl. Compd. 1976; 12: 1182
  • 13 Lusinchi M, Stanbury TV, Zard SZ. Chem. Commun. 2002; 1532
    • 14a Zarovnaya IS, Zlenko HT, Palchikov VA. Eur. Chem. Bull. 2014; 3: 543
    • 14b Ghosh AK, Thompson WJ, Munson PM, Liu W, Huff JR. Bioorg. Med. Chem. Lett. 1995; 5: 83
    • 14c Brant MG, Wulff JE. Org. Lett. 2012; 14: 5876
    • 14d Mezler M, Geneste H, Gault L, Marek GJ. Curr. Opin. Investig. Drugs 2010; 11: 833
    • 14e Ghosh AK, Thompson WJ, Lee HY, McKee SP, Munson PM, Duong TT, Darke PL, Zugay JA, Emini EA, Schleif WA, Huff JR, Anderson PS. J. Med. Chem. 1993; 36: 924
    • 14f Gore PM, Hancock AP, Hodgson ST, Procopiou PA, Vile S. (Glaxo Group Ltd.) WO 2009021965 A3, 2009
  • 15 Bissantz C, Kuhn B, Stahl M. J. Med. Chem. 2010; 53: 5061
    • 16a Chou T.-S, Chou S.-SP. J. Chin. Chem. Soc. 1992; 39: 625
    • 16b Chou T.-S. Huaxue 2000; 58: 45
  • 17 Bhat SV. J. Indian Inst. Sci. 1994; 74: 257
  • 18 Leonard J, Hague AB, Knight JA. Organosulfur Chem. 1998; 2: 229
  • 19 Hopkins PB, Fuchs PL. J. Org. Chem. 1978; 43: 1208
  • 20 Liotta CL, Verbicky JW. Tetrahedron Lett. 1985; 26: 1395
  • 21 Winter RW, Gard GL. J. Fluorine Chem. 2007; 128: 896
  • 22 Ellis F, Sammes PG, Hursthouse MB, Neidle S. J. Chem. Soc., Perkin Trans. 1 1972; 1560
  • 23 Lee S.-J, Tzeng C.-B, Liu Y.-I, Chien C.-J, Chou T.-S. J. Org. Chem. 1997; 62: 7812
  • 24 Banert K, Ihle A, Kuhtz A, Penk E, Saha B, Würthwein E.-U. Tetrahedron 2013; 69: 2501
  • 25 Priebe H. Angew. Chem. 1984; 96: 728; Angew. Chem., Int. Ed. Engl. 1984, 23, 736
  • 26 Nowak I, Rogers LM, Rogers RD, Thrashe JS. J. Fluorine Chem. 1999; 93: 27
  • 27 Uneyama K, Kanai M. Tetrahedron Lett. 1990; 31: 3583
  • 28 Berestovitskaya VM, Speranskii EM, Perekalin VV. Zh. Org. Khim. 1977; 13: 1934
  • 29 Berestovitskaya V. Russ. J. Gen. Chem. 2000; 70: 1419
  • 30 Chou T.-S, Hung SC, Tso HH. J. Org. Chem. 1987; 52: 3394
  • 31 Chou T.-S, Lee S.-J, Peng M.-L, Sun D.-J, Chou S.-SP. J. Org. Chem. 1988; 53: 3027
  • 32 Chou T.-S, Tso H.-H, Tao Y.-T, Lin LC. J. Org. Chem. 1987; 52: 244
  • 33 Chou S.-SP, Sun C.-M. Tetrahedron Lett. 1990; 31: 1035
  • 34 Bader H, Hopf H, Sieper K. Chem. Ber. 1989; 122: 383
  • 35 McIntosh JM, Sieler RA. J. Org. Chem. 1978; 43: 4431
  • 36 Andrade GS, Berkner JE, Liotta CL, Eckert C, Schiraldi DA, Andersen A, Collard DM. Synth. Commun. 2003; 33: 3643
  • 37 Baraldi PG, Barco A, Benetti S, Manfredini S, Pollini GP, Simoni D, Zanirato V. Tetrahedron 1988; 44: 6451
  • 38 Nakayama J, Machida H, Saito R, Akimoto K, Hoshino M. Chem. Lett. 1985; 14: 1173
  • 39 Aono M, Hyodo C, Terao Y, Achiwa K. Tetrahedron Lett. 1986; 27: 4039
  • 40 Patel BA, Dickerson JE, Heck RF. J. Org. Chem. 1978; 43: 5018
  • 41 Harrington PJ, DiFiore KA. Tetrahedron Lett. 1987; 28: 495
  • 42 Sengupta S, Bhattacharyya S. Synth. Commun. 1996; 26: 231
  • 43 Bew S, Sweeney JB. Synlett 1994; 698
  • 44 Bew S, Sweeney JB. Synlett 1997; 1273
  • 45 Fielder S, Rowan DD, Sherburn MS. Angew. Chem. Int. Ed. 2000; 39: 4331
  • 46 Takayama H, Suzuki T. J. Chem. Soc., Chem. Commun. 1988; 1044
  • 47 Yao Q. Org. Lett. 2002; 4: 427
  • 48 Zheng S, Huang W, Gao N, Cui R, Zhang M, Zhao X. Chem. Commun. 2011; 47: 6969
  • 49 Lim KM.-H, Hayashi T. J. Am. Chem. Soc. 2015; 137: 3201
    • 50a Trost BM, Huang X. Org. Lett. 2005; 7: 2097
    • 50b Trost BM, Huang X. Chem. Asian J. 2006; 1: 469
  • 51 Polunin EV, Zaks IM, Moiseenkov AM, Semenovskii AV. Bull. Acad. Sci. USSR Chem. Sci. 1979; 28: 594
  • 52 Krug RC, Rigney JA, Tichelaar GR. J. Org. Chem. 1962; 27: 1305
  • 53 Yamada S, Ohsawa H, Suzuki T, Takayama H. Chem. Lett. 1983; 12: 1003
  • 54 Chou T.-S, Tso H.-H, Chang L.-J. J. Chem. Soc., Perkin Trans. 1 1985; 515
    • 55a Bonnet M, Banwell MG, Willis AC, Ferro V. ARKIVOC 2006; (x): 35
  • 56 Tao Y.-T, Liu C.-L, Lee S.-J, Chou S.-SP. J. Org. Chem. 1986; 51: 4718
  • 57 Chou T.-S, Tsai C.-Y, Huang L.-J. J. Org. Chem. 1990; 55: 5410
  • 58 Chou T.-S, Lee S.-J, Tso H.-H, Yu C.-F. J. Org. Chem. 1987; 52: 5082
    • 59a Chou T.-S, Chang L.-J, Tso H.-H. J. Chem. Soc., Perkin Trans. 1 1986; 1039
    • 59b Chou T.-S, Chang C.-Y. J. Org. Chem. 1991; 56: 4560
  • 60 Chou S.-SP, Sung C.-C, Sun D.-J. J. Chin. Chem. Soc. 1992; 39: 333
  • 61 Chou S.-SP, Sung C.-C. J. Chin. Chem. Soc. 1989; 36: 601
  • 62 Tso H.-H, Chou T.-S, Lee W.-C. J. Chem. Soc., Chem. Commun. 1987; 934
  • 63 Brant MG, Bromba CM, Wulff JE. J. Org. Chem. 2010; 75: 6312
  • 64 Brant MG, Friedmann JN, Bohlken CG, Oliver AG, Wulff JE. Org. Biomol. Chem. 2015; 13: 4581
  • 65 Banala S, Wurst K, Kräutler B. Helv. Chim. Acta 2010; 93: 1192
  • 66 Ando K, Kankake M, Suzuki T, Takayama H. Tetrahedron 1995; 51: 129
  • 67 Kräutler B, Sheehan CS, Rieder A. Helv. Chim. Acta 2000; 83: 583
  • 68 Gordivska O, Listunov D, Popov K, Volovnenko T, Volovenko Y. Tetrahedron Lett. 2013; 54: 4171
  • 69 Subramanian T, Meenakshi S, Dange SY, Bhat SV. Synth. Commun. 1997; 27: 2557
  • 70 Berestovitskaya VM, Efremova IE, Lapshina LV, Serebryannikova AV, Gurzhiy VV, Abzianidze VV. Mendeleev Commun. 2015; 25: 191
  • 71 Dittmann W, Stürzenhofecker F. Justus Liebigs Ann. Chem. 1966; 699: 177
  • 72 Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD. Nat. Med. 2007; 13: 1102
  • 73 Waser M, Moher ED, Borders SS. K, Hansen MM, Hoard DW, Laurila ME, LeTourneau ME, Miller RD, Phillips ML, Sullivan KA, Ward JA, Xie C, Bye CA, Leitner T, Herzog-Krimbacher B, Kordian M, Müllner M. Org. Process Res. Dev. 2011; 15: 1266
    • 74a Li DB, Rogers-Evans M, Carreira EM. Org. Lett. 2013; 15: 4766
    • 74b Li DB, Rogers-Evans M, Carreira EM. Org. Lett. 2011; 13: 6134
  • 75 Yarmolchuk VS, Mukan IL, Grygorenko OO, Tolmachev AA, Shishkina SV, Shishkin OV, Komarov IV. J. Org. Chem. 2011; 76: 7010
  • 76 Oh K. Org. Lett. 2007; 9: 2973