Synthesis 2015; 47(21): 3257-3285
DOI: 10.1055/s-0035-1560344
review
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Natural Products and Medicinal Drugs through One-Pot-Reaction Strategies

Bor-Cherng Hong*
Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 621, Taiwan   Email: chebch@ccu.edu.tw
,
Arun Raja
Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 621, Taiwan   Email: chebch@ccu.edu.tw
,
Vishal M. Sheth
Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 621, Taiwan   Email: chebch@ccu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 30 June 2015

Accepted after revision: 27 July 2015

Publication Date:
29 September 2015 (online)


Abstract

One-pot synthesis has become an important subject of modern synthetic chemistry owing to its efficiency, versatility and expediency in constructing complicated polycyclic ring systems, especially with a sustainable and catalytic aspect. This review aims to highlight the recent advances in this area with specific emphasis on the asymmetric synthesis of natural products and related core structures as well as medicinal drugs via one-pot operation.

1 Introduction

2 Double Reactions

3 Triple Reactions

4 Quadruple Reactions

5 Pot-Economy Reactions

6 Conclusions

 
  • References

    • 1a Multicomponent Reactions. Zhu J, Bienayme H. Wiley-VCH; Weinheim: 2005
    • 1b Multicomponent Reactions: Concepts and Applications for Design and Synthesis. Herrera RP, Marquess-Lopez E. John Wiley & Sons; New York: 2015
    • 1c Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2015
    • 1d Science of Synthesis: Multicomponent Reactions. Vol. I and II. Müller TJ. J. Georg Thieme; Stuttgart: 2014
    • 1e Ramachary DB, Jain S. Org. Biomol. Chem. 2011; 9: 1277
    • 1f Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 2a Tietze L, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis. Wiley-VCH; Weinheim: 2006
    • 2b Poulin J, Grise-Bard CM, Barriault L. Chem. Soc. Rev. 2009; 38: 3092
    • 2c Padwa A. Chem. Soc. Rev. 2009; 38: 3072

      Recent reviews:
    • 3a Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 3b Jiang H, Albrecht Ł, Jørgensen KA. Chem. Sci. 2013; 4: 2287
    • 3c Cheng D, Ishihara Y, Tan B, Barbas III CF. ACS Catal. 2014; 4: 743
    • 3d Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 3e Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 3f Marqués-López E, Herrera RP, Christmann M. Nat. Prod. Rep. 2010; 27: 1138
  • 4 Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
  • 5 Clavier H, Pellissier H. Adv. Synth. Catal. 2012; 354: 3347

    • Reviews:
    • 6a Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 6b Pellissier H. Asymmetric Domino Reactions. Royal Society of Chemistry; London: 2013
    • 6c Green NJ, Sherburn MS. Aust. J. Chem. 2013; 66: 267
  • 7 Enders D, Hüttl MR. M, Grondal C, Raabe G. Nature 2006; 441: 861
  • 9 Smith JM, Moreno J, Boal BW, Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
    • 10a Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 10b Figueiredo RM, Christmann M. Eur. J. Org. Chem. 2007; 2575
    • 10c Arns S, Barriault L. Chem. Commun. 2007; 2211
    • 10d Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 10e Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
  • 11 Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
  • 12 Koley D, Krishna Y, Srinivas K, Khan AA, Kant R. Angew. Chem. Int. Ed. 2014; 53: 13196
  • 13 Hanessian S, Chattopadhyay AK. Org. Lett. 2014; 16: 232
  • 14 Cheng X, Waters SP. Org. Lett. 2013; 15: 4226
  • 15 Yue G, Zhang Y, Fang L, Li C.-C, Luo T, Yang Z. Angew. Chem. Int. Ed. 2014; 53: 1837
  • 16 Pomey G, Phansavath P. Synthesis 2015; 47: 1016
  • 17 Prévost S, Thai K, Schűtzenmeister N, Coulthard G, Erb W, Aggarwal VK. Org. Lett. 2015; 17: 504
  • 18 Wang Y, Luo Y.-C, Zhang H.-B, Xu P.-F. Org. Biomol. Chem. 2012; 10: 8211
  • 19 Chen J, Chen J, Xie Y, Zhang H. Angew. Chem. Int. Ed. 2012; 51: 1024
  • 20 Han J.-C, Li F, Li C.-C. J. Am. Chem. Soc. 2014; 136: 13610
  • 21 Zhao P, Beaudry CM. Angew. Chem. Int. Ed. 2014; 53: 10500
  • 22 Halskov KS, Donslund B, Barfűsser S, Jørgensen KA. Angew. Chem. Int. Ed. 2014; 53: 4137
  • 23 Xiao K.-J, Luo J.-M, Xia X.-E, Wang Y, Huang P.-Q. Chem. Eur. J. 2013; 19: 13075
  • 24 Frías M, Padrón JM, Alemán J. Chem. Eur. J. 2015; 21: 8237
  • 25 O’Reilly E, Iglesias C, Ghislieri D, Hopwood J, Galman JL, Lloyd RC, Turner NJ. Angew. Chem. Int. Ed. 2014; 53: 2447
  • 26 Du J.-Y, Zeng C, Han X.-J, Qu H, Zhao X.-H, An X.-T, Fan C.-A. J. Am. Chem. Soc. 2015; 137: 4267
  • 27 Donohoe TJ, Lipiński RM. Angew. Chem. Int. Ed. 2013; 52: 2491
  • 28 Tietze LF, Jackenkroll S, Hierold J, Ma L, Waldecker B. Chem. Eur. J. 2014; 20: 8628
  • 29 Albertson AK. F, Lumb J.-P. Angew. Chem. Int. Ed. 2015; 54: 2204
  • 30 Horning BD, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 6442
  • 31 Lam SK, Chiu P. Chem. Eur. J. 2007; 13: 9589
  • 32 Leung LT, Chiu P. Chem. Asian J. 2015; 10: 1042
  • 33 Huang S, Du G, Lee C.-S. J. Org. Chem. 2011; 76: 6534
  • 34 Anada M, Washio T, Watanabe Y, Takeda K, Hashimoto S. Eur. J. Org. Chem. 2010; 6850
  • 35 Yuan C, Du B, Yang L, Liu B. J. Am. Chem. Soc. 2013; 135: 9291
  • 36 Campbell EL, Skepper CK, Sankar K, Duncan KK, Boger DL. Org. Lett. 2013; 15: 5306
    • 37a Ishikawa H, Colby DA, Boger DL. J. Am. Chem. Soc. 2008; 130: 420
    • 37b Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
  • 38 Chu S, Wallace S, Smith MD. Angew. Chem. Int. Ed. 2014; 53: 13826
  • 39 Farmer RL, Scheidt KA. Chem. Sci. 2013; 4: 3304
  • 40 Michrowska A, List B. Nat. Chem. 2009; 1: 225
  • 41 Brindani N, Rassu G, Dell’Amico L, Zambrano V, Pinna L, Curti C, Sartori A, Battistini L, Casiraghi G, Pelosi G, Greco D, Zanardi F. Angew. Chem. Int. Ed. 2015; 54: 7386
  • 42 Norris MD, Perkins MV, Sorensen EJ. Org. Lett. 2015; 17: 668
  • 43 Calo F, Richardson J, Barrett AG. M. Org. Lett. 2009; 11: 4910
  • 44 Jones SB, Simmons B, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 13606
  • 45 Zhao S, Andrade RB. J. Am. Chem. Soc. 2013; 135: 13334
  • 46 Laforteza B, Pickworth M, MacMillan DW. C. Angew. Chem. Int. Ed. 2013; 52: 11269
  • 47 Simmons B, Walji AM, MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 4349
  • 48 Hong BC, Hsu C.-S, Lee G.-H. Chem. Commun. 2012; 48: 2385
  • 49 Ramachary DB, Kishor M. J. Org. Chem. 2007; 72: 5056
  • 50 Harada S, Sakai T, Takasu K, Yamada K, Yamamoto Y, Tomioka K. Chem. Asian J. 2012; 7: 2196
  • 51 Wang H, Tang P, Zhou Q, Zhang D, Chen Z, Huang H, Qin Y. J. Org. Chem. 2015; 80: 2494
  • 52 Song L, Yao H, Zhu L, Tong R. Org. Lett. 2013; 15: 6
  • 53 Venukadasula PK. M, Chegondi R, Maitra S, Hanson PR. Org. Lett. 2010; 12: 1556
  • 54 Jayasinghe S, Venukadasula PK. M, Hanson PR. Org. Lett. 2014; 16: 122
  • 55 Portalier F, Bourdreux F, Marrot J, Moreau X, Coeffard V, Greck C. Org. Lett. 2013; 15: 5642
  • 56 Dange NS, Hong B.-C, Lee G.-H. RSC Adv. 2014; 4: 59706
  • 57 Madhavachary R, Ramachary DB. Eur. J. Org. Chem. 2014; 7317
  • 58 Chang S, Hur S, Britton R. Angew. Chem. Int. Ed. 2015; 54: 211
  • 59 Roudier M, Constantieux T, Quintard A, Rodriguez J. Org. Lett. 2014; 16: 2802
  • 60 Xu S, Unabara D, Uemura D, Arimoto H. Chem. Asian J. 2014; 9: 367
  • 61 Mukaiyama T, Ogata K, Sato I, Hayashi Y. Chem. Eur. J. 2014; 20: 13583
  • 62 Echemendía R, de La Torre AF, Monteiro JL, Pila M, Corrêa AG, Westermann B, Rivera DG, Paixão MW. Angew. Chem. Int. Ed. 2015; 54: 7621
  • 63 Zhang W, Bah J, Wohlfarth A, Franzén J. Chem. Eur. J. 2011; 17: 13814
  • 64 Fujita S, Sakaguchi T, Kobayashi T, Tsuchikawa H, Katsumura S. Org. Lett. 2013; 15: 2758
  • 65 Kobayashi T, Hasegawa F, Hirose Y, Tanaka K, Mori H, Katsumura S. J. Org. Chem. 2012; 77: 1812
  • 66 Sakaguchi T, Kobayashi S, Katsumura S. Org. Biomol. Chem. 2011; 9: 257
  • 67 Kobayashi T, Hasegawa F, Tanaka K, Katsumura S. Org. Lett. 2006; 8: 3813
  • 68 Hong B.-C, Liao W.-K, Dange NS, Liao J.-H. Org. Lett. 2013; 15: 468
  • 69 Yang H, Feng J, Li Y, Tang Y. Org. Lett. 2015; 17: 1441
  • 70 Jhuo D.-H, Hong B.-C, Chang C.-W, Lee G.-H. Org. Lett. 2014; 16: 2724
    • 71a Hong B.-C, Kotame P, Tsai C.-W, Liao J.-H. Org. Lett. 2010; 12: 776
    • 71b Kotame P, Hong B.-C, Liao J.-H. Tetrahedron Lett. 2009; 50: 704
  • 72 Spence JT. J, George JH. Org. Lett. 2013; 15: 3891
  • 73 Ishikawa H, Suzuki T, Hayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1304
    • 74a Ishikawa H, Suzuki T, Orita H, Uchimaru T, Hayashi Y. Chem. Eur. J. 2010; 16: 12616
    • 74b Ishikawa H, Bondzic BP, Hayashi Y. Eur. J. Org. Chem. 2011; 6020
  • 75 Ishikawa H, Honma M, Hayashi Y. Angew. Chem. Int. Ed. 2011; 50: 2824
  • 76 Hayashi Y, Umemiya S. Angew. Chem. Int. Ed. 2013; 52: 3450
  • 77 Rendler S, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 5027
    • 78a Ishikawa H, Sawano S, Yasui Y, Shibata Y, Hayashi Y. Angew. Chem. Int. Ed. 2011; 50: 3774
    • 78b Zhang W, Franzén J. Adv. Synth. Catal. 2010; 352: 499
    • 78c Lin S, Deiana L, Zhao G.-L, Sun J, Córdova A. Angew. Chem. Int. Ed. 2011; 50: 7624
    • 78d Santra S, Andreana PR. Angew. Chem. Int. Ed. 2011; 50: 9418
    • 78e Liu Y.-L, Wang X, Zhao Y.-L, Zhu F, Zeng X.-P, Chen L, Wang C.-H, Zhao X.-L, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
    • 78f Song A, Zhang X, Song X, Chen X, Yu C, Huang H, Li H, Wang W. Angew. Chem. Int. Ed. 2014; 53: 4940
    • 78g Bisai V, Suneja A, Singh VK. Angew. Chem. Int. Ed. 2014; 53: 10737
    • 78h Chen D.-F, Zhao F, Hu Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 10763
    • 78i Grossmann A, Bartlett S, Janecek M, Hodgkinson JT, Spring DR. Angew. Chem. Int. Ed. 2014; 53: 13093
    • 78j Hsiao C.-C, Liao H.-H, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
    • 78k Enders D, Wang C, Mukanova M, Greb A. Chem. Commun. 2010; 46: 2447
    • 78l Fan F, Xie W, Ma D. Chem. Commun. 2012; 48: 7571
    • 78m Xie X, Peng C, He G, Leng H.-J, Wang B, Huang W, Han B. Chem. Commun. 2012; 48: 10487
    • 78n Senthilkumar S, Prasad SS, Kumar PS, Baskaran S. Chem. Commun. 2014; 50: 1549
    • 78o Gómez CV, Cruz DC, Mose R, Jørgensen KA. Chem. Commun. 2014; 50: 6035
    • 78p Loh CC. J, Badorrek J, Raabe G, Enders D. Chem. Eur. J. 2011; 17: 13409
    • 78q Suero MG, Campa RD, Torre-Fernández L, García-Granda S, Flórez J. Chem. Eur. J. 2012; 18: 7287
    • 78r Dai W, Lu H, Li X, Shi F, Tu S.-J. Chem. Eur. J. 2014; 20: 11382
    • 78s Ying J, Pu L. Chem. Eur. J. 2014; 20: 16301
    • 78t Lee H.-J, Cho C.-W. Eur. J. Org. Chem. 2014; 387
    • 78u Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
    • 78v Zhu S, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
    • 78w Burrell AJ. M, Coldham I, Watson L, Oram N, Pilgram CD, Martin NG. J. Org. Chem. 2009; 74: 2290
    • 78x Potowski M, Schürmann M, Preut H, Antonchick AP, Waldmann H. Nat. Chem. 2012; 8: 428
    • 78y Tan B, Candeias NR, Barbas III CF. Nat. Chem. 2011; 3: 473
    • 78z Bae J.-Y, Lee H.-J, Youn S.-H, Kwon S.-H, Cho C.-W. Org. Lett. 2010; 12: 4352
    • 78aa Dai Q, Rana NK, Zhao JC.-G. Org. Lett. 2013; 15: 2922
    • 78ab Ramachary DB, Kishor M. Org. Biomol. Chem. 2010; 8: 2859
    • 78ac SHazelard D, Ishikawa H, Hashizume D, Koshino H, Hayashi Y. Org. Lett. 2008; 10: 1445
    • 78ad Tan B, Shi Z, Chua PJ, Zhong G. Org. Lett. 2008; 10: 3425
    • 78ae Wang Y.-G, Kumano T, Kano T, Maruoka K. Org. Lett. 2009; 11: 2027
    • 78af Rueping M, Volla CM. R. RSC Adv. 2011; 1: 79
    • 78ag Erdmann N, Atodiresei I, Enders D. Synthesis 2012; 44: 2107
    • 78ah Enders D, Greb A, Deckers K, Selig P, Merkens C. Chem. Eur. J. 2012; 18: 10226