Synlett 2015; 26(20): 2835-2842
DOI: 10.1055/s-0035-1560319
letter
© Georg Thieme Verlag Stuttgart · New York

N-Substituted Formamides as C1-Sources for the Synthesis of Benzimidazole and Benzothiazole Derivatives by Using Zinc Catalysts

Deepak B. Nale
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400 019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400 019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 11 July 2015

Accepted after revision: 23 August 2015

Publication Date:
22 September 2015 (online)


Abstract

An efficient and convenient one-pot protocol has been developed for the synthesis of a variety of benzimidazole, benzoxazole, and benzothiazole derivatives. This novel approach uses various o-phenylenediamines and N-substituted formamides (C1 sources) in a zinc-catalyzed cyclization in the presence of poly(methylhydrosiloxane) to afford the corresponding derivatives as sole products in moderate to excellent yields.

Supporting Information

 
  • References

    • 1a Abonia R, Cortés E, Insuasty B, Quiroga J, Nogueras M, Cobo J. Eur. J. Med. Chem. 2011; 46: 4062
    • 1b Refaat HM. Eur. J. Med. Chem. 2010; 45: 2949
    • 1c Sheng C, Che X, Wang W, Wang S, Cao Y, Yao J, Miao Z, Zhang W. Eur. J. Med. Chem. 2011; 46: 1706
    • 1d Zhang J, Wang J.-L, Zhou Z.-M, Li Z.-H, Xue W.-Z, Xi D, Hao L.-P, Han X.-F, Fei F, Lui T, Liang A.-H. Bioorg. Med. Chem. 2012; 20: 4208
    • 1e Choi SJ, Park HJ, Lee SK, Kim SW, Han G, Choo HY. P. Bioorg. Med. Chem. 2006; 14: 1229
    • 1f Benzimidazoles and Congeneric Tricyclic Compounds . Preston PN. Wiley; New York: 1981. Parts 1 and 2
    • 1g Preston PN. Chem. Rev. 1974; 74: 279
    • 2a Ebenezer WJ, Hutchings MG, Jones K, Lambert DA, Watt I. Tetrahedron Lett. 2007; 48: 1641
    • 2b Yao S, Schafer-Hales KJ, Belfield KD. Org. Lett. 2007; 9: 5645
    • 2c Rodionov VO, Presolski SI, Gardinier S, Lim Y.-H, Finn MG. J. Am. Chem. Soc. 2007; 129: 12696
    • 2d Rudrawar S, Kondaskar A, Chakraborti AK. Synthesis 2005; 2521
    • 2e Chakraborti AK, Rudrawar S, Jadhav KB, Kaur G, Chankeshwara SV. Green Chem. 2007; 9: 1335
    • 3a Alinezhad H, Salehian F, Biparva P. Synth. Commun. 2012; 42: 102
    • 3b Alinezhad H, Salehian F. Synth. React. Inorg. Met.-Org. Chem. 2013; 43: 532
    • 3c Dziewit L, Dmowski M, Baj J, Bartosik D. Appl. Environ. Microbiol. 2010; 76: 1861
    • 4a Seijas JA, Vázquez-Tato MP, Carballido-Reboredo MR, Crecente-Campo J, Romar-López L. Synlett 2007; 313
    • 4b Wen X, El Bakali J, Deprez-Poulain R, Deprez B. Tetrahedron Lett. 2012; 53: 2440
    • 4c Chakraborti AK, Selvam C, Kaur G, Bhagat S. Synlett 2004; 851
    • 4d Phillips MA. J. Chem. Soc. 1928; 172
    • 4e Grimmett MR. Imidazole and Benzimidazole Synthesis . Academic Press; San Diego: 1997
    • 5a Blacker AJ, Farah MM, Marsden SP, Saidi O, Williams JM. J. Tetrahedron Lett. 2009; 50: 6106
    • 5b Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Angew. Chem. Int. Ed. 2011; 50: 657
    • 5c Endo Y, Bäckvall J.-E. Chem. Eur. J. 2012; 18: 13609
    • 5d Nguyen TB, Ermolenko L, Dean WA, Al-Mourabit A. Org. Lett. 2012; 14: 5948
    • 5e Yu J, Xu J, Lu M. Appl. Organomet. Chem. 2013; 27: 606
    • 5f Khalafi-Nezhad A, Panahi F. ACS Catal. 2014; 4: 1686
    • 5g Mukhopadhyay C, Ghosh S, Sengupta S, De S. RSC Adv. 2011; 1: 1033
    • 6a Ma D, Xie S, Xue P, Zhang X, Dong J, Jiang Y. Angew. Chem. Int. Ed. 2009; 48: 4222
    • 6b Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
  • 7 Deng H, Li Z, Ke F, Zhou X. Chem. Eur. J. 2012; 18: 4840
    • 8a Vera MD, Pelletier JC. J. Comb. Chem. 2007; 9: 569
    • 8b Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
    • 8c Bose DS, Idrees M. J. Org. Chem. 2006; 71: 8261
    • 8d Kashiyama E, Hutchinson I, Chua M.-S, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westwell AD, Stevens MF. G. J. Med. Chem. 1999; 42: 4172
    • 8e Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
    • 9a Shelkar R, Sarode S, Nagarkar J. Tetrahedron Lett. 2013; 54: 6986
    • 9b Bahrami K, Khodaei MM, Nejati A. Green Chem. 2010; 12: 1237
    • 9c Qiao JX, Wang TC, Hu C, Li J, Wexler RR, Lam PY. S. Org. Lett. 2011; 13: 1804
    • 9d Yu B, Zhang H, Zhao Y, Chen S, Xu J, Huang C, Liu Z. Green Chem. 2013; 15: 95
    • 9e Yu H, Kawanishi H, Koshima H. Heterocycles 2003; 60: 1457
    • 9f Sparke AE, Fisher CM, Mewis RE, Archibald SJ. Tetrahedron Lett. 2010; 51: 4723
    • 9g Mochona M, Le L, Mateeva N, Gangapuram M, Ardley T, Kinfe K. J. Heterocycl. Chem. 2010; 47: 1367
    • 9h Bahrami K, Khodaei MM, Kavianinia I. Synthesis 2007; 547
    • 9i Du L.-H, Wang Y.-G. Synthesis 2007; 675
    • 9j Bahrami K, Khodaei MM, Naali F. J. Org. Chem. 2008; 73: 6835
    • 9k Saha D, Saha A, Ranu BC. Green Chem. 2009; 11: 733
    • 9l Tang L, Guo X, Yang Y, Zha Z, Wang Z. Chem. Commun. 2014; 50: 6145
    • 9m Kattimani PP, Kamble RR, Meti GY. RSC Adv. 2015; 5: 29447
    • 9n Khemnar A, Bhanage BM. RSC Adv. 2014; 4: 8939
    • 10a González J, López LA, Vicente R. Chem. Commun. 2014; 50: 8536
    • 10b Ding G, Lu B, Li Y, Wan J, Zhang Z, Xie X. Adv. Synth. Catal. 2015; 357: 1013
    • 10c Legrave N, Couhert A, Olivero S, Desmurs J.-R, Duñach E. Eur. J. Org. Chem. 2012; 2012: 901
    • 10d Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc. 2010; 132: 1770
    • 10e González MJ, López LA, Vicente R. Tetrahedron Lett. 2015; 56: 1600
    • 11a Muzart J. Tetrahedron 2009; 65: 8313
    • 11b Ding S, Jiao N. Angew. Chem. 2012; 124: 9360 ; Angew. Chem. Int. Ed. 2012, 51, 9226
    • 11c Kim J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
    • 11d Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
    • 11e Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
    • 11f Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 11g Kennedy GL. Jr. Crit. Rev. Toxicol. 1986; 17: 129
    • 11h Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. J. Org. Chem. 2011; 76: 5489
  • 12 Ali W, Rout SK, Guin S, Modi A, Banerjee A, Patel BK. Adv. Synth. Catal. 2015; 357: 515
    • 13a Nale DB, Bhanage BM. Green Chem. 2015; 17: 2480
    • 13b Nale DB, Rana S, Parida KM, Bhanage BM. Catal. Sci. Technol. 2014; 4: 1608
    • 13c Nale DB, Rana S, Parida KM, Bhanage BM. Appl. Catal., A 2014; 469: 340
    • 13d Nale DB, Saigaonkar SD, Bhanage BM. J. CO2 Util. 2014; 8: 67
  • 14 Benzimidazole Derivatives; General Procedure Zn(OAc)2·2H2O (5.0 mol%) was transferred to a 100 mL autoclave reactor equipped with an overhead stirrer and an automatic temperature-control system. The appropriate benzene-1,2-diamine 1 (2 mmol), DMF (10.0 mmol), and PMHS (5.0 mmol) were successively introduced. The reactor was sealed, flushed three times with N2 (10 atm), and heated to the required temperature with vigorous stirring (600 rpm). During the course of the reaction, an increase of pressure was observed, due to the generation of Me2NH and HCHO at 120 °C.15 (For this reason, the protocol needs to be performed in a sealed high-pressure reactor.) When the reaction was complete, the autoclave was cooled to r.t., and the pressure generated during the reaction was carefully released. Basic hydrolysis was then carried out at r.t. for 30 min to remove unreacted PMHS from the mixture.13a The mixture was then extracted with EtOAc (3 × 20 mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The crude products were further purified by column chromatography [silica gel (100–200 mesh), PE–EtOAc (20:4 to 10:2)]. The spectroscopic data for the products were consistent with those reported in the literature.9 6-Methyl-1H-benzimidazole (2b) White solid; yield: 120 mg (91%). 1H NMR (CDCl3, 400 MHz, 30 °C, TMS): δ = 8.00 (s, 1 H), 7.55 (d, J = 8 Hz, 1 H), 7.43 (s, 1 H), 7.11 (d, J = 8 Hz, 1 H), 6.16 (s, 1 H), 2.47 (s, 3 H). 13C NMR (CDCl3, 100 MHz, 30 °C, TMS): δ = 140.26, 137.13, 136.03, 132.92, 124.53, 115.44, 114.77, 21.63. GC-MS (EI): m/z (%) = 132 (89) [M + 1]+, 131 (100) [M+], 104 (20), 77 (25), 66 (10), 51 (17). 1-Methyl-6-nitro-1H-benzimidazole (2g) Yellowish solid; yield: 140 mg (79%). 1H NMR (CDCl3, 400 MHz, 30 °C, TMS): δ = 8.39 (s, 1 H), 8.24–8.21 (d, J = 8, 12 Hz, 1 H), 8.12 (s, 1 H), 7.87 (d, J = 12 Hz, 1 H), 3.96 (s, 3 H). 13C NMR (CDCl3, 100 MHz, 30 °C, TMS): δ = 146.75, 142.86, 132.72, 123.35, 119.45, 117.03, 105.45, 28.68. GC-MS (EI): m/z (%) = 178 (12) [M + 1]+, 177 (100) [M+], 147 (44), 131 (51), 116 (27), 104 (43), 90 (25), 77 (18), 63 (68), 51 (17). 1-Methyl-1H-benzimidazole (2m) Brownish solid; yield: 125 mg (95%). 1H NMR (CDCl3, 400 MHz, 30 °C, TMS): δ = 7.82 (s, 1 H), 7.72–7.61 (m, 1 H), 7.34–7.22 (m, 2 H), 3.65 (s, 3 H). 13C NMR (CDCl3, 100 MHz, 30 °C, TMS): δ = 146.37, 143.11, 136.33, 131.87, 126.75, 115.20, 113.44, 29.74. GC-MS (EI): m/z (%) = 133 (9) [M + 1]+, 132 (100) [M+], 118 (49), 104 (11), 91 (23), 77 (6), 65 (13), 64 (19), 63 (24), 52 (11). N-Methyl-2-nitroaniline (2r) Orange solid; yield: 143 mg (94%). 1H NMR (CDCl3, 400 MHz, 30 °C, TMS): δ = 8.11 (d, J = 8 Hz, 1 H), 7.77 (br s, 1 H), 7.46–7.38 (m, 1 H), 6.79 (d, J = 8 Hz, 1 H), 6.61 (m, 1 H), 3.01 (s, 3 H). 13C NMR (CDCl3, 100 MHz, 30 °C, TMS): δ = 146.43, 136.37, 131.96, 126.82, 115.25, 113.46, 29.78. GC-MS (EI) (%): m/z = 154 (9) [M + 2]+, 152 (100) [M+], 138 (20), 122 (13), 106 (59), 92 (21), 79 (61), 77 (66), 65 (59), 51 (13).
  • 15 Petersen TP, Larsen AF, Ritzén A, Ulven T. J. Org. Chem. 2013; 78: 4190
    • 16a Beyer TA, Scott PJ, Aldinger CE, Dee MF, Siegel TW, Zembrowski WJ, Mylari BL. J. Med. Chem. 1992; 35: 457
    • 16b Song J.-H, Huang C.-S, Nagata K, Yeh JZ, Narahashi T. J. Pharmacol. Exp. Ther. 1997; 282: 707