Significance: The alkaloid pandamarine was isolated from leaves of the tropical plant *Pandanus amaryllifolius*, and features an interesting diazaspiro[4.5] core. After the group’s report of the oxidation of furans to 5-hydroxy-1H-pyrrol-2(5H)-ones (*Angew. Chem. Int. Ed.* 2015, 54, 6283), they now disclose an elegant total synthesis of pandamarine relying on the double use of their methodology. Crucial to the success of the key transformation of bisfuran F to pandamarine is the dual role of methylene blue as both photosensitizer and redox catalyst.

Comment: Addition of excess alkyne A to hydroxyacetone furnished diol B which underwent silver-mediated cyclodehydration to furan C. Nitrile C was the precursor for both aldehyde D and amine E, which were coupled by reductive amination to give bisfuran F. In their key step, exposure of F to oxygen and methylene blue, followed by ammonia and dimethylsulfide gave intermediate G. In situ methylene blue catalyzed radical oxidation with triplet oxygen and hydroperoxide reduction then furnished intermediate I. Acid-catalyzed cyclization and elimination completed the synthesis of pandamarine in 30% yield.