Klinische Neurophysiologie 2015; 46(03): 141-145
DOI: 10.1055/s-0035-1559716
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Neuromodulatorische nicht-invasive Hirnstimulation: Methodik und klinische Anwendungsmöglichkeiten

Neuromodulatory Non-invasive Brain Stimulation: Methods and Clinical Application
J. Grundey
1   Klinik für Klinische Neurophysiologie, Universitätsmedizin Göttingen
,
M. A. Nitsche
1   Klinik für Klinische Neurophysiologie, Universitätsmedizin Göttingen
2   Abteilung Psychologie und Neurowissenschaften, Leibniz Institut für Arbeitsforschung an der TU Dortmund
3   Abteilung Neurologie, Universitätsklinikum Bergmannsheil, Bochum
› Author Affiliations
Further Information

Publication History

Publication Date:
25 September 2015 (online)

Zusammenfassung

Pathologisch veränderte Neuroplastizität wird zunehmend als pathophysiologische Grundlage verschiedenster neurologischer und psychiatrischer Erkrankungen identifiziert. Nicht-invasive Hirnstimulationsverfahren bieten zum einen die Möglichkeit, Neuroplastizität und kortikale Exzitabilität am Patienten zu untersuchen und zum anderen pathologische Neuroplastizität therapeutisch zu modulieren. In den letzten Jahrzehnten wurden verschiedene Verfahren zur Beeinflussung von Neuroplastizität im Menschen etabliert. Hierzu gehören die repetitive transkranielle Magnetstimulation, die gepaarte assoziative Stimulation, die transkranielle Gleichstromstimulation, und oszillatorische elektrische Stimulationsverfahren wie die transkranielle Wechselstromstimulation oder Random Noise Stimulation. Im klinischen Alltag regelmäßig eingesetzt und in den USA von der FDA bei schweren Depressionen zur Behandlung zugelassen ist bisher die repetitive transkranielle Magnetstimulation, die übrigen Verfahren haben gegenwärtig einen experimentellen Charakter. Im folgenden Artikel geben wir einen Überblick über die Methodik der unterschiedlichen Stimulationsverfahren, die bisherigen klinischen Daten zum therapeutischen Einsatz und Zukunftsperspektiven.

Abstract

Pathological alterations of plasticity are increasingly discussed as pathophysiological foundation of diverse neurologic and psychiatric diseases. The tools of non-invasive brain stimulation (NIBS) offer the possibility to examine altered plasticity in patients and furthermore modulate pathological plasticity therapeutically. Multiple methods to affect human neuroplasticity were developed and established during the last years. These include repetitive transcranial magnetic stimulation (rTMS), paired associative stimulation (PAS), transcranial direct current stimulation (tDCS) and oscillatory electric stimulation procedures like transcranial alternating current stimulation (tACS) and random noise stimulation. The only FDA-approved and clinically implemented method of NIBS is the repetitive transcranial magnetic stimulation that is used for the treatment of major depressions. All other tools of NIBS have so far been mainly applied experimentally. In the following article we provide an overview of the different methods of NIBS, the present clinical and therapeutic data and future perspectives.

 
  • Literatur

  • 1 Ziemann U, Paulus W, Nitsche MA et al. Consensus: Motor cortex plasticity protocols. Brain Stimul 2008; 1: 164-182 Epub 2008 Jul 1. Review
  • 2 Rossini PM, Burke D, Chen R et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126: 1071-1107 Epub 2015 Feb 10. Review
  • 3 Antal A, Nitsche MA, Kinsces TZ et al. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 2004; 19: 2888-2892
  • 4 Nitsche MA, Schauenburg A Lang et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cog Neurosci 2003; 15: 619-626
  • 5 Flöel A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014; 85 (Pt 3) 934-947 Epub 2013 May 30. Review
  • 6 Mansour AR, Farmer MA, Baliki MN et al. Restor Neurol Neurosci 2014; 32: 129-139 DOI: 10.3233/RNN-139003. Chronic pain: the role of learning and brain plasticity
  • 7 Spedding M, Neau I, Harsing L. Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr Opin Pharmacol 2003; 3: 33-40
  • 8 Nitsche MA, Müller-Dahlhaus F, Paulus W et al. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol 2012; 590: 4641-4662
  • 9 Shin YI, Foerster Á, Nitsche MA. Re: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; pii: S0028-3932(15)00188-8 DOI: 10.1016/j.neuropsychologia.2015.06.021.
  • 10 Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci 2012; 43: 192-199 Review
  • 11 Nevler N, Ash EL. TMS as a Tool for Examining Cognitive Processing. Curr Neurol Neurosci Rep 2015; 15: 575
  • 12 Boggio PS, Ferrucci R, Mameli F et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul 2012; 5: 223-230
  • 13 Flöel A, Suttorp W, Kohl O et al. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging 2012; 33: 1682-1689
  • 14 Lefaucheur JP, André-Obadia N, Antal A et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125: 2150-2206
  • 15 Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 2013; 230: 13-23
  • 16 Lee W, Kim H, Jung Y et al. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep 2015; 5: 8743
  • 17 Oliviero A, Carrasco-López MC, Campolo M et al. Safety Study of Transcranial Static Magnetic Field Stimulation (tSMS) of the Human Cortex. Brain Stimul 2015; 8: 481-485
  • 18 Reis J, Schambra HM, Cohen LG et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 2009; 106: 1590-1595
  • 19 Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007; 3: 383-393 Review
  • 20 Touge T, Gerschlager W, Brown P et al. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?. Clin Neurophysiol 2001; 112: 2138-2145
  • 21 Huang YZ, Sommer M, Thickbroom G et al. Consensus: New methodologies for brain stimulation. Brain Stimul 2009; 2: 2-13
  • 22 Huang YY, Kandel ER. Low-frequency stimulation induces a pathway-specific late phase of LTP in the amygdala that is mediated by PKA and dependent on protein synthesis. Learn Mem 2007; 14: 497-503 Print 2007 Jul
  • 23 Lenz M, Platschek S, Priesemann V et al. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2014; [Epub ahead of print]
  • 24 Vlachos 1 A, Müller-Dahlhaus F, Rosskopp J et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2012; 32: 17514-17523
  • 25 Huang YZ, Chen RS, Rothwell JC et al. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 2007; 118: 1028-1032 Epub 2007 Mar 23
  • 26 Koek RJ, Yerevanian BI, Tachiki KH et al. Hemispheric asymmetry in depression and mania. A longitudinal QEEG study in bipolar disorder. J Affect Disord 1999; 53: 109-122
  • 27 Diego MA, Field T, Hernandez-Reif M. CES-D depression scores are correlated with frontal EEG alpha asymmetry. Depress Anxiety 2001; 13: 32-37
  • 28 Nitsche MA, Boggio PS, Fregni F et al. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol 2009; 219: 14-19
  • 29 Normann C, Schmitz D, Fürmaier A et al. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry 2007; 62: 373-380 Epub 2007 Jan 19
  • 30 Melzack R. From the gate to the neuromatrix. Pain 1999; (Suppl. 06) S121-S126 Review
  • 31 Tsubokawa T, Katayama Y, Yamamoto T et al. Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg 1993; 78: 393-401
  • 32 Knotkova 1 H, Nitsche MA, Cruciani RA. Putative physiological mechanisms underlying tDCS analgesic effects. Front Hum Neurosci 2013; 7: 628
  • 33 Nguyen JP, Nizard J, Keravel Y et al. Invasive brain stimulation for the treatment of neuropathic pain. Nat Rev Neurol 2011; 7: 699-709
  • 34 André-Obadia N, Mertens P, Gueguen A et al. Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes. Neurology 2008; 71: 833-840
  • 35 Leung A, Donohue M, Xu R et al. rTMS for suppressing neuropathic pain: a meta-analysis. J Pain 2009; 10: 1205-1216
  • 36 Knijnik LM, Dussán-Sarria JA, Rozisky JR et al. Repetitive Transcranial Magnetic Stimulation for Fibromyalgia: Systematic Review and Meta-Analysis. Pain Pract 2015;
  • 37 Mhalla A, Baudic S, Ciampi de Andrade D et al. Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 2011; 152: 1478-1485
  • 38 Slotema CW, Blom JD, van Lutterveld R et al. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry 2014; 76: 101-110 Epub 2013 Oct 25
  • 39 Vercammen A, Knegtering H, Bruggeman R et al. Effects of bilateral repetitive transcranial magnetic stimulation on treatment resistant auditory-verbal hallucinations in schizophrenia: a randomized controlled trial. Schizophr Res 2009; 114: 172-179
  • 40 Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology 2013; 64: 579-587 Review
  • 41 Chung HK, Tsai CH, Lin YC et al. Effectiveness of theta-burst repetitive transcranial magnetic stimulation for treating chronic tinnitus. Audiol Neurootol 2012; 17: 112-120
  • 42 Stefan K, Kunesch E, Cohen LG et al. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000; 123: 572-584
  • 43 Wolters A, Sandbrink F, Schlottmann A et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 2003; 89: 2339-2345 Epub 2003 Jan 22
  • 44 Hebb DO. The Organization of Behaviour. New York: Wiley; 1949
  • 45 Frantseva MV, Fitzgerald PB, Chen R et al. Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 2008; 18: 990-996
  • 46 Akbarian S, Sucher NJ, Bradley D et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 1996; 16: 19-30
  • 47 Stefansson H, Sarginson J, Kong A et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83-87 Epub 2002 Dec 11
  • 48 Grundey J, Thirugnanasambandam N, Kaminsky K et al. Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J Neurosci 2012; 32: 4156-4162
  • 49 Grundey J, Amu R, Ambrus GG et al. Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine. Psychopharmacology (Berl) 2015; 232: 2491-2501
  • 50 Player MJ, Taylor JL, Weickert CS et al. Increase in PAS-induced neuroplasticity after a treatment course of transcranial direct current stimulation for depression. J Affect Disord 2014; 167: 140-147 Epub 2014 Jun 6
  • 51 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527: 633-639
  • 52 Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001; 57: 1899-1901
  • 53 Nitsche MA, Fricke K, Henschke U et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003; 553: 293-301
  • 54 Monte-Silva K, Kuo MF, Hessenthaler S et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul 2013; 6: 424-432 Epub 2012 Jun 2
  • 55 Monte-Silva K, Kuo MF, Liebetanz D et al. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol 2010; 103: 1735-1740 Epub 2010 Jan 27
  • 56 Nitsche MA, Schauenburg A, Lang N et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 2003; 15: 619-626
  • 57 Nitsche MA, Jaussi W, Liebetanz D et al. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 2004; 29: 1573-1578
  • 58 Fritsch B, Reis J, Martinowich K et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66: 198-204
  • 59 Liebetanz D, Nitsche MA, Tergau F et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002; 125: 2238-2247
  • 60 Hasan A, Nitsche MA, Rein B et al. Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav Brain Res 2011; 224: 15-22 Epub 2011 May 30
  • 61 Hasan A, Nitsche MA, Herrmann M et al. Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimul 2012; 5: 475-483 Epub 2011 Sep 5
  • 62 Fregni F, Boggio PS, Nitsche MA et al. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 2006; 8: 203-204
  • 63 Boggio PS, Rigonatti SP, Ribeiro RB et al. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int J Neuropsychopharmacol 2008; 11: 249-254 Epub 2007 Jun 11
  • 64 Brunoni AR, Valiengo L, Baccaro A et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 2013; 70: 383-391
  • 65 Nitsche MA, Kuo MF, Karrasch R et al. Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol Psychiatry 2009; 66: 503-508 DOI: 10.1016/j.biopsych.2009.03.022. Epub 2009 May 9
  • 66 Blumberger DM, Tran LC, Fitzgerald PB et al. A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression. Front Psychiatry 2012; 3: 74 eCollection 2012
  • 67 Loo CK, Sachdev P, Martin D et al. A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int J Neuropsychopharmacol 2010; 13: 61-69 Epub 2009 Aug 12
  • 68 Marlow NM, Bonilha HS, Short EB. Efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation for treating fibromyalgia syndrome: a systematic review. Pain Pract 2013; 13: 131-145 Epub 2012 May 28
  • 69 Nizard J, Lefaucheur JP, Helbert M et al. Non-invasive stimulation therapies for the treatment of refractory pain. Discov Med 2012; 14: 21-31
  • 70 Plow EB, Pascual-Leone A, Machado A. Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. J Pain 2012; 13: 411-424 Epub 2012 Apr 7. Review
  • 71 Fregni F, Boggio PS, Lima MC et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 2006; 122: 197-209 Epub 2006 Mar 27
  • 72 Mori F, Codecà C, Kusayanagi H et al. Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain 2010; 11: 436-442 Epub 2009 Dec 16
  • 73 Antal A, Paulus W. Transcranial magnetic and direct current stimulation in the therapy of pain. Schmerz 2010; 24: 161-166 Review. German
  • 74 Fregni F, Gimenes R, Valle AC et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 2006; 54: 3988-3998
  • 75 Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci 2013; 7: 317
  • 76 Voss U, Holzmann R, Hobson A et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci 2014; 17: 810-812 Epub 2014 May 11
  • 77 Polanía R, Nitsche MA, Korman C et al. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 2012; 22: 1314-1318 Epub 2012 Jun 7
  • 78 Meiron O, Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin Neurophysiol 2014; 125: 77-82 Epub 2013 Jul 3
  • 79 Brittain JS, Probert-Smith P, Aziz TZ et al. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 2013; 23: 436-440 Epub 2013 Feb 14
  • 80 Terney D, Chaieb L, Moliadze V. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 2008; 28: 14147-14155