J Pediatr Genet 2016; 05(01): 051-060
DOI: 10.1055/s-0035-1558423
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Developmental Genetics and Congenital Anomalies of the Kidney and Urinary Tract

Natalie Uy
1   Department of Pediatrics/Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, United States
,
Kimberly Reidy
1   Department of Pediatrics/Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, United States
› Author Affiliations
Further Information

Publication History

09 December 2014

10 February 2015

Publication Date:
07 September 2015 (online)

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects and the leading cause of end-stage renal disease in children. There is a wide spectrum of renal abnormalities, from mild hydronephrosis to more severe cases, such as bilateral renal dysplasia. The etiology of the majority of cases of CAKUT remains unknown, but there is increasing evidence that genomic imbalance contributes to the pathogenesis of CAKUT. Advances in human and mouse genetics have contributed to increased understanding of the pathophysiology of CAKUT. Mutations in genes involved in both transcription factors and signal transduction pathways involved in renal development are associated with CAKUT. Large cohort studies suggest that copy number variants, genomic, or de novo mutations may explain up to one-third of all cases of CAKUT. One of the major challenges to the use of genetic information in the clinical setting remains the lack of strict genotype–phenotype correlation. However, identifying genetic causes of CAKUT may lead to improved diagnosis of extrarenal complications. With the advent of decreasing costs for whole genome and exome sequencing, future studies focused on genotype–phenotype correlations, gene modifiers, and animal models of gene mutations will be needed to translate genetic advances into improved clinical care.

 
  • References

  • 1 Livera LN, Brookfield DS, Egginton JA, Hawnaur JM. Antenatal ultrasonography to detect fetal renal abnormalities: a prospective screening programme. BMJ 1989; 298 (6685) 1421-1423
  • 2 Sanna-Cherchi S, Ravani P, Corbani V , et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 2009; 76 (5) 528-533
  • 3 Hains DS, Bates CM, Ingraham S, Schwaderer AL. Management and etiology of the unilateral multicystic dysplastic kidney: a review. Pediatr Nephrol 2009; 24 (2) 233-241
  • 4 Weber S. Novel genetic aspects of congenital anomalies of kidney and urinary tract. Curr Opin Pediatr 2012; 24 (2) 212-218
  • 5 Bulum B, Ozçakar ZB, Ustüner E , et al. High frequency of kidney and urinary tract anomalies in asymptomatic first-degree relatives of patients with CAKUT. Pediatr Nephrol 2013; 28 (11) 2143-2147
  • 6 Menezes M, Puri P. Familial vesicoureteral reflux—is screening beneficial?. J Urol 2009; 182 (4, Suppl): 1673-1677
  • 7 Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 2011; 26 (6) 897-903
  • 8 Weber S, Moriniere V, Knüppel T , et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 2006; 17 (10) 2864-2870
  • 9 Ulinski T, Lescure S, Beaufils S , et al. Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 2006; 17 (2) 497-503
  • 10 Klein J, Lacroix C, Caubet C , et al. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med 2013; 5 (198) 198ra106
  • 11 Muller F, Dommergues M, Mandelbrot L, Aubry MC, Nihoul-Fekete C, Dumez Y. Fetal urinary biochemistry predicts postnatal renal function in children with bilateral obstructive uropathies. Obstet Gynecol 1993; 82 (5) 813-820
  • 12 Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE. Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol 2014; 9 (3) 499-505
  • 13 Heikkilä J, Holmberg C, Kyllönen L, Rintala R, Taskinen S. Long-term risk of end stage renal disease in patients with posterior urethral valves. J Urol 2011; 186 (6) 2392-2396
  • 14 Böger CA, Gorski M, Li M , et al; CKDGen Consortium. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet 2011; 7 (9) e1002292
  • 15 Köttgen A, Glazer NL, Dehghan A , et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 2009; 41 (6) 712-717
  • 16 Köttgen A, Pattaro C, Böger CA , et al. New loci associated with kidney function and chronic kidney disease. Nat Genet 2010; 42 (5) 376-384
  • 17 Liu CT, Garnaas MK, Tin A , et al; CKDGen Consortium. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet 2011; 7 (9) e1002264
  • 18 Pattaro C, Köttgen A, Teumer A , et al; CARDIoGRAM Consortium; ICBP Consortium; CARe Consortium; Wellcome Trust Case Control Consortium 2 (WTCCC2). Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet 2012; 8 (3) e1002584
  • 19 van Eerde AM, Duran K, van Riel E , et al. Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS ONE 2012; 7 (4) e31327
  • 20 Laksmi NK, Khullar M, Kaur B , et al. Association of angiotensin converting enzyme and angiotensin type 2 receptor gene polymorphisms with renal damage in posterior urethral valves. J Pediatr Urol 2010; 6 (6) 560-566
  • 21 Wong CJ, Moxey-Mims M, Jerry-Fluker J, Warady BA, Furth SL. CKiD (CKD in children) prospective cohort study: a review of current findings. Am J Kidney Dis 2012; 60 (6) 1002-1011
  • 22 Staples A, Wong C. Risk factors for progression of chronic kidney disease. Curr Opin Pediatr 2010; 22 (2) 161-169
  • 23 Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol 2009; 29 (4) 321-337
  • 24 Dressler GR. Advances in early kidney specification, development and patterning. Development 2009; 136 (23) 3863-3874
  • 25 Doğan CS, Torun Bayram M. Renal outcome of children with unilateral renal agenesis. Turk J Pediatr 2013; 55 (6) 612-615
  • 26 Hunziker M, Kutasy B, D'Asta F, Puri P. Urinary tract anomalies associated with high grade primary vesicoureteral reflux. Pediatr Surg Int 2012; 28 (2) 201-204
  • 27 Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 2010; 18 (5) 698-712
  • 28 Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol 2014; 29 (4) 597-608
  • 29 Bohnenpoll T, Kispert A. Ureter growth and differentiation. Semin Cell Dev Biol 2014; 36: 21-30
  • 30 Murawski IJ, Myburgh DB, Favor J, Gupta IR. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse. Am J Physiol Renal Physiol 2007; 293 (5) F1736-F1745
  • 31 Murawski IJ, Gupta IR. Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 2006; 69 (2) 105-117
  • 32 Ichikawa I, Kuwayama F, Pope IV JC, Stephens FD, Miyazaki Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 2002; 61 (3) 889-898
  • 33 Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 2005; 132 (3) 529-539
  • 34 Krishnan A, de Souza A, Konijeti R, Baskin LS. The anatomy and embryology of posterior urethral valves. J Urol 2006; 175 (4) 1214-1220
  • 35 Thomas J. Etiopathogenesis and management of bladder dysfunction in patients with posterior urethral valves. Indian J Urol 2010; 26 (4) 480-489
  • 36 Hwang DY, Dworschak GC, Kohl S , et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 2014; 85 (6) 1429-1433
  • 37 Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 2007; 27 (21) 7661-7668
  • 38 Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M. Sall1 balances self-renewal and differentiation of renal progenitor cells. Development 2014; 141 (5) 1047-1058
  • 39 Kanda S, Tanigawa S, Ohmori T , et al. Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol 2014; 25 (11) 2584-2595
  • 40 Xu J, Liu H, Park JS, Lan Y, Jiang R. Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis. Development 2014; 141 (7) 1442-1452
  • 41 Xu J, Wong EY, Cheng C , et al. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 2014; 31 (4) 434-447
  • 42 Zhou P, Chen T, Fang Y , et al. Down-regulated Six2 by knockdown of neurofibromin results in apoptosis of metanephric mesenchyme cells in vitro. Mol Cell Biochem 2014; 390 (1-2) 205-213
  • 43 Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development 2003; 130 (14) 3085-3094
  • 44 Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994; 372 (6507) 679-683
  • 45 Park JS, Ma W, O'Brien LL , et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 2012; 23 (3) 637-651
  • 46 Kobayashi A, Valerius MT, Mugford JW , et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 2008; 3 (2) 169-181
  • 47 Fujimura S, Jiang Q, Kobayashi C, Nishinakamura R. Notch2 activation in the embryonic kidney depletes nephron progenitors. J Am Soc Nephrol 2010; 21 (5) 803-810
  • 48 Chu JY, Sims-Lucas S, Bushnell DS, Bodnar AJ, Kreidberg JA, Ho J. Dicer function is required in the metanephric mesenchyme for early kidney development. Am J Physiol Renal Physiol 2014; 306 (7) F764-F772
  • 49 McLaughlin N, Wang F, Saifudeen Z, El-Dahr SS. In situ histone landscape of nephrogenesis. Epigenetics 2014; 9 (2) 222-235
  • 50 Patel SR, Ranghini E, Dressler GR. Mechanisms of gene activation and repression by Pax proteins in the developing kidney. Pediatr Nephrol 2014; 29 (4) 589-595
  • 51 Brophy PD, Alasti F, Darbro BW , et al. Genome-wide copy number variation analysis of a Branchio-oto-renal syndrome cohort identifies a recombination hotspot and implicates new candidate genes. Hum Genet 2013; 132 (12) 1339-1350
  • 52 Kohlhase J. SALL1 mutations in Townes-Brocks syndrome and related disorders. Hum Mutat 2000; 16 (6) 460-466
  • 53 Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 2008; 82 (2) 344-351
  • 54 Chatterjee R, Ramos E, Hoffman M , et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 2012; 131 (11) 1725-1738
  • 55 Pini Prato A, Rossi V, Mosconi M , et al. A prospective observational study of associated anomalies in Hirschsprung's disease. Orphanet J Rare Dis 2013; 8: 184
  • 56 Sims-Lucas S, Di Giovanni V, Schaefer C, Cusack B, Eswarakumar VP, Bates CM. Ureteric morphogenesis requires Fgfr1 and Fgfr2/Frs2α signaling in the metanephric mesenchyme. J Am Soc Nephrol 2012; 23 (4) 607-617
  • 57 Cain JE, Islam E, Haxho F , et al. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS ONE 2009; 4 (10) e7313
  • 58 Lu W, van Eerde AM, Fan X , et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007; 80 (4) 616-632
  • 59 Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV. Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol 2010; 298 (3) F807-F817
  • 60 Bertoli-Avella AM, Conte ML, Punzo F , et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 2008; 19 (4) 825-831
  • 61 Yim HE, Jung MJ, Choi BM , et al. Genetic polymorphism of the renin-angiotensin system on the development of primary vesicoureteral reflux. Am J Nephrol 2004; 24 (2) 178-187
  • 62 Zhou TB, Lin N, Liu YG, Qin YH, Shao MB, Peng DD. Association of ACE I/D gene polymorphism with vesicoureteral reflux susceptibility in children: a meta-analysis. J Renin Angiotensin Aldosterone Syst 2012; 13 (2) 273-281
  • 63 Vivante A, Mark-Danieli M, Davidovits M , et al. Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling. J Am Soc Nephrol 2013; 24 (4) 550-558
  • 64 Cheng HT, Kim M, Valerius MT , et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 2007; 134 (4) 801-811
  • 65 Cheng HT, Miner JH, Lin M, Tansey MG, Roth K, Kopan R. Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 2003; 130 (20) 5031-5042
  • 66 Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol 2012; 226 (2) 394-403
  • 67 Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 2008; 64 (6) 592-598
  • 68 Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP , et al. Deletion of Frs2alpha from the ureteric epithelium causes renal hypoplasia. Am J Physiol Renal Physiol 2009; 297 (5) F1208-F1219
  • 69 Sims-Lucas S, Cusack B, Baust J , et al. Fgfr1 and the IIIc isoform of Fgfr2 play critical roles in the metanephric mesenchyme mediating early inductive events in kidney development. Dev Dyn 2011; 240 (1) 240-249
  • 70 Sims-Lucas S, Cusack B, Eswarakumar VP, Zhang J, Wang F, Bates CM. Independent roles of Fgfr2 and Frs2alpha in ureteric epithelium. Development 2011; 138 (7) 1275-1280
  • 71 Walker KA, Sims-Lucas S, Di Giovanni VE , et al. Deletion of fibroblast growth factor receptor 2 from the peri-wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux. PLoS ONE 2013; 8 (2) e56062
  • 72 Heidet L, Decramer S, Pawtowski A , et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 2010; 5 (6) 1079-1090
  • 73 Sanna-Cherchi S, Kiryluk K, Burgess KE , et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 2012; 91 (6) 987-997
  • 74 Ferrè S, Veenstra GJ, Bouwmeester R, Hoenderop JG, Bindels RJ. HNF-1B specifically regulates the transcription of the γa-subunit of the Na+/K+-ATPase. Biochem Biophys Res Commun 2011; 404 (1) 284-290
  • 75 Heliot C, Desgrange A, Buisson I , et al. HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development 2013; 140 (4) 873-885
  • 76 Paces-Fessy M, Fabre M, Lesaulnier C, Cereghini S. Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis. Hum Mol Genet 2012; 21 (14) 3143-3155
  • 77 Gresh L, Fischer E, Reimann A , et al. A transcriptional network in polycystic kidney disease. EMBO J 2004; 23 (7) 1657-1668
  • 78 Adalat S, Woolf AS, Johnstone KA , et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 2009; 20 (5) 1123-1131
  • 79 Faguer S, Chassaing N, Bandin F , et al. The HNF1B score is a simple tool to select patients for HNF1B gene analysis. Kidney Int 2014; 86 (5) 1007-1015
  • 80 Faguer S, Decramer S, Chassaing N , et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int 2011; 80 (7) 768-776
  • 81 Hasui M, Kaneko K, Tsuji S , et al. Different phenotypes of HNF1ß deletion mutants in familial multicystic dysplastic kidneys. Clin Nephrol 2013; 79 (6) 484-487
  • 82 Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Cereghini S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet 2006; 15 (15) 2363-2375
  • 83 Loirat C, Bellanné-Chantelot C, Husson I, Deschênes G, Guigonis V, Chabane N. Autism in three patients with cystic or hyperechogenic kidneys and chromosome 17q12 deletion. Nephrol Dial Transplant 2010; 25 (10) 3430-3433
  • 84 Madariaga L, Morinière V, Jeanpierre C , et al. Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin J Am Soc Nephrol 2013; 8 (7) 1179-1187
  • 85 Nakayama M, Nozu K, Goto Y , et al. HNF1B alterations associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2010; 25 (6) 1073-1079
  • 86 Raile K, Klopocki E, Wessel T , et al. HNF1B abnormality (mature-onset diabetes of the young 5) in children and adolescents: high prevalence in autoantibody-negative type 1 diabetes with kidney defects. Diabetes Care 2008; 31 (11) e83
  • 87 Buisson I, le Bouffant R, Futel M, Riou JF, Umbhauer M. Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. Dev Biol 2015; 397 (2) 175-190
  • 88 Porteous S, Torban E, Cho NP , et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/- mutant mice. Hum Mol Genet 2000; 9 (1) 1-11
  • 89 Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 2010; 10: 89
  • 90 Freter S, Muta Y, O'Neill P, Vassilev VS, Kuraku S, Ladher RK. Pax2 modulates proliferation during specification of the otic and epibranchial placodes. Dev Dyn 2012; 241 (11) 1716-1728
  • 91 Higashide T, Wada T, Sakurai M, Yokoyama H, Sugiyama K. Macular abnormalities and optic disk anomaly associated with a new PAX2 missense mutation. Am J Ophthalmol 2005; 139 (1) 203-205
  • 92 Dziarmaga A, Clark P, Stayner C , et al. Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2-Bax fetal mice mimics the renal-coloboma syndrome. J Am Soc Nephrol 2003; 14 (11) 2767-2774
  • 93 Favor J, Sandulache R, Neuhäuser-Klaus A , et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 1996; 93 (24) 13870-13875
  • 94 Amiel J, Audollent S, Joly D , et al. PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur J Hum Genet 2000; 8 (11) 820-826
  • 95 Otteson DC, Shelden E, Jones JM, Kameoka J, Hitchcock PF. Pax2 expression and retinal morphogenesis in the normal and Krd mouse. Dev Biol 1998; 193 (2) 209-224
  • 96 Schimmenti LA, Cunliffe HE, McNoe LA , et al. Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am J Hum Genet 1997; 60 (4) 869-878
  • 97 Discenza MT, He S, Lee TH , et al. WT1 is a modifier of the Pax2 mutant phenotype: cooperation and interaction between WT1 and Pax2. Oncogene 2003; 22 (50) 8145-8155
  • 98 Patel SR, Bhumbra SS, Paknikar RS, Dressler GR. Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression. Mol Cell 2012; 45 (2) 185-195
  • 99 Yan L, Yao X, Bachvarov D, Saifudeen Z, El-Dahr SS. Genome-wide analysis of gestational gene-environment interactions in the developing kidney. Physiol Genomics 2014; 46 (17) 655-670
  • 100 El Andalousi J, Murawski IJ, Capolicchio JP, El-Sherbiny M, Jednak R, Gupta IR. A single-center cohort of Canadian children with VUR reveals renal phenotypes important for genetic studies. Pediatr Nephrol 2013; 28 (9) 1813-1819
  • 101 Darlow JM, Dobson MG, Darlay R , et al. A new genome scan for primary nonsyndromic vesicoureteric reflux emphasizes high genetic heterogeneity and shows linkage and association with various genes already implicated in urinary tract development. Mol Genet Genomic Med 2014; 2 (1) 7-29
  • 102 Ko YA, Mohtat D, Suzuki M , et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 2013; 14 (10) R108
  • 103 Wijshake T, Baker DJ, van de Sluis B. Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta 2014; 1842 (10) 1942-1950
  • 104 Clark P, Dziarmaga A, Eccles M, Goodyer P. Rescue of defective branching nephrogenesis in renal-coloboma syndrome by the caspase inhibitor, Z-VAD-fmk. J Am Soc Nephrol 2004; 15 (2) 299-305