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Introduction

Spine surgery is a continuously evolving field. The last decade
has witnessed the development of less invasive surgical
techniques. Advances in navigation, tissue retractors, and
other specialized instruments have enabled surgeons to
perform decompressions, and even fusions, through smaller
incisions, with less disruption of muscle and soft tissue. It is
important to note that the goals of decompression and
stabilization are accomplished with minimally disruptive
surgery. A growing body of literature is demonstrating the
physiologic advantages of less disruptive surgery. This article
reviews key biological concepts that support this surgical
approach.

Anatomy
Thebasic concept behind allminimally disruptive approaches
is the reduction of trauma to paraspinal muscle groups. The

posterior paraspinal muscles are composed of two groups:
the deep paramedian transversospinalismuscle group, which
includes the multifidus, interspinalis, intertransversus, and
short rotators, and the superficial and lateral erector spinae
muscles (longissimus and iliocostalis) (►Fig. 1). These
muscles span the thoracolumbar spine and insert distally
onto the sacrum, the sacroiliac joint, and the iliac wing. In
contrast to other paraspinal muscles, the multifidus muscle
has a large physiologic cross-sectional area (PCSA) and short
fibers. As a result of its unique structure, the multifidus
muscle is designed to create large forces over relatively short
distances, making it a major posterior stabilizer of the
spine.1–8

It is important to note that the multifidus sarcomere is
positioned along the ascending portion of the length-tension
curve. As a result of this fiber arrangement, the multifidus
muscle is able to produce more force as the spine flexes
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Abstract Spine surgery is a continuously evolving field. Traditional posterior midline approaches
to the lumbar spine are associated with muscle injury. Common mechanisms of injury
include ischemia, denervation, and mechanical disruption of tendinous attachments of
lumbar muscles. Muscle injury may be documented with chemical markers (creatinine
kinase, aldolase, proinflammatory cytokines), by imaging studies, or with muscle
biopsy. Minimally disruptive surgical approaches to the spine have the potential to
minimize the trauma to muscular structures and thus improve the outcomes of surgery.
The impact of minimally invasive spinal surgery on long-term clinical outcomes remains
unknown. State-of-the-art pathophysiology of minimally invasive spine surgery is
presented in this review.
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forward, protecting the spine when it is in the most vulnera-
ble position. The morphology of the multifidus muscle is
complex, and unlike other paraspinal muscles, which have
specific origins and insertions, the multifidus muscle is
formed by five separate bands.9 Each band is composed of
several fascicles arising from the tip of the spinous process
and the lateral surface of the vertebral lamina. As one
proceeds caudally, the various fascicles diverge into separate
attachments on the mamillary processes of the caudal verte-
brae, two to five levels below their origin. The deepest fibers
of the multifidus muscle are thought to provide segmental
stabilization of the lumbar spine.10,11

The erector spinae muscles are composed of the long-
issimus, the iliocostalis, and the spinalis.5,12,13 In the lumbar
spine, the longissimus muscle is positioned lateral to the
multifidus muscle and originates from the transverse and
accessory processes and inserts caudally into the ventral
surface of the posterior superior iliac spine. The iliocostalis
muscle is lateral to the longissimus muscle and originates
from the tip of the transverse processes and the adjacent
middle layer of the thoracolumbar fascia and inserts into the
ventral edge of the iliac crest caudally.12,14 In contrast to the
multifidus muscle, microarchitectural studies reveal that the
iliocostalis and longissimus muscles contain long muscle
fascicles with a relatively small PCSA. This anatomical ar-
rangement suggests that they serve to move the trunk in
extension, lateral bending, and rotation. They are more likely
to act as secondary stabilizers of the spinal column.15

Paraspinal Muscle Injury during Posterior Spinal
Surgery
Traditional posterior midline approaches to the lumbar spine
result in muscle atrophy.4,7,16–24 Themultifidusmuscle is the
most likelymuscle to be injured during the standard posterior
approach to the lumbar spine. Atrophy, marked by a decrease
in the muscle cross-sectional area (CSA), in turn leads to

decreased force production capacity of the muscle; certainly
these changes are not without consequence.25,26

Glycerol is an important component of glycerophospholi-
pid, the basic structural component of the cell plasma mem-
brane. When the integrity of the cell membrane is disrupted,
glycerol is released into the interstitial fluid. Ren et al
demonstrated increased glycerol concentrations in the para-
spinal muscles of patients undergoing instrumented postero-
lateral lumbar fusions when compared with glycerol
concentrations in the patients’ unoperated deltoid muscles,
which served as a control.27

Kim et al studied markers of tissue injury in the blood of
patients undergoing open versus minimally invasive fu-
sions.28 Markers of skeletal muscle injury (creatinine kinase,
aldolase), proinflammatory cytokines (interleukin [IL]-6, IL-
8), and anti-inflammatory cytokines (IL-10, IL-1 receptor
antagonist) were found to be elevated several fold in patients
undergoing open surgery. Most markers in the minimally
invasive fusion group returned to baseline by 3 days, whereas
patients in the open surgery group required 7 days.

Muscle biopsies obtained from patients undergoing revi-
sion spinal surgery have shown selective type II fiber atrophy,
widespread fiber type grouping (a sign of reinnervation), and
a moth-eaten appearance of muscle fibers.29

Several mechanisms are responsible for iatrogenic muscle
injury. Self-retaining retractors are a common cause of mus-
cle injury. They have a tourniquet effect on the muscle and
result in local ischemia followed by reperfusion injury.30–32

Self-retaining retractors cause elevated tissue pressures that
result in decreased intramuscular perfusion.33,34 The severity
of the muscle injury is directly proportional to the degree of
the intramuscular pressure and the length of retraction time.

Application of tubular retractors through a limited ap-
proach reduces crush injury observed with self-retaining
retractors.35 To our knowledge, no published studies have
directly compared paraspinal muscles pressure after applica-
tion of a tubular versus a self-retaining retractor. The superi-
ority of tubular retractors may be anticipated based on better
early clinical outcomes.36–40 However, better outcomes are
not only results of the difference in pressure exerted on the
paraspinal muscles by the retractors, but they are also a result
of their approach-related features such as avoiding detach-
ment of the musculotendinous complex from the vertebrae
and the reduced likelihood of injuring the neurovascular
bundles.35,36

The next proposed mechanism of iatrogenic injury occurs
during dissection of the multifidus muscle in conventional
posterior lumbar procedures. Cutting of the tendinous origin
on the spinous process may destroy the physiologic binding
betweenmuscle fibers and bone, and healing of the muscle to
the bone may be affected postoperatively.4 Destroying the
internal vasculature and tissue structure of this muscle
during exposure may also cause ischemic necrosis of the
multifidus muscle. Resection of the dorsal vertebral bony
structures (spinous process, lamina) for posterior decompres-
sion of the nerves compromises the bony insertion and
separation of bilateral multifidus muscles and changes its
physiologic function postoperatively.35

Fig. 1 Axial T-2 weighted magnetic resonance image at the L4
vertebral body level showing the psoas (PSOAS), the multifidus (MU),
iliocostalis (IL), longissimus (LO), quadratus lumborum (QL), and
intertransversarii (IT) muscles.
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Another mechanism leading to muscle degeneration and
atrophy following surgery is muscle denervation. The inner-
vation of the multifidus muscle is monosegmental, making it
especially vulnerable to injury.9 The multifidus muscle is
innervated by the medial branch nerve that originates from
the dorsal rami of each of the lumbar spinal nerves.41Damage
to the neuromuscular junction following prolonged muscle
retraction can also lead to muscle denervation. Because the
medial branch nerve passes near the mamillary process, it is
at risk when using traditional pedicle screw insertion tech-
niques.42 Regev et al compared the risk of transecting the
medial branch nerve after pedicle screw insertion usingmini-
open versus percutaneous minimally invasive techniques.42

Medial branch nerve transectionwas observed in 84% of cases
when the pedicles were instrumented using the mini-open
technique and in 20% when the percutaneous insertion
technique was used. Muscle biopsies in patients diagnosed
with failed back syndrome showed signs of advanced chronic
denervation consisting of group atrophy,marked fibrosis, and
fatty infiltration.43

Application of Minimally Disruptive Techniques to
Preserve Spinal Function
Strategies used during minimally disruptive surgery result in
less muscle trauma, avoid disruption of tendinous attach-
ments, and minimize damage to the neurovascular supply.
Kim et al compared lumbarmuscle strength between patients
treated with open posterior instrumentation versus percuta-
neous instrumentation.44 Patients undergoing percutaneous
instrumentation displayed > 50% improvement in lumbar
extension strength, whereas patients undergoing open sur-
gery had no significant improvement in lumbar extension
strength.

Stevens et al used magnetic resonance imaging (MRI) to
analyze the postsurgical appearance of the multifidus mus-
cle.45 In patients treated with a traditional open posterior
transforaminal lumbar interbody fusion (TLIF) technique,
marked intermuscular edema was observed on MRI at
6 months postoperatively. In contrast, patients in the mini-
open TLIF group had a normal multifidus muscle appearance
on MRI at 6 months following surgery. Tsutsumimoto et al
demonstrated that multifidus muscle atrophy and T2 signal
intensity on MRI after mini-open PLIF were significantly
lower than those observed in patients following an open
PLIF. There was no difference in Japanese Orthopedic Associ-
ation scores between the two groups.46 Wang et al showed
that theMRI T2 relaxation time of themultifidusmuscleswas
significantly shorter in patients who underwent minimally
invasive TLIF versus patients who had open TLIF 3 months
postoperatively.47 The electromyographic examination re-
vealed that the average discharge amplitude and frequency
of the sacrospinalis muscle were significantly higher in
minimally invasive surgery (MIS). Clinical outcomes (Oswes-
try Disability Index [ODI] and visual analog scale [VAS] scores)
were similar in both groups and better postoperatively than
preoperatively.

Fan et al also found that the cross-sectional area of the
multifidus muscle in MRI scanning was significantly lower in

the open PLIF than in the minimally invasive PLIF group of
patients.48 The postoperative ODI and VAS scores were lower
in patients who underwent minimally invasive PLIF than
open surgery PLIF. However, there are reports showing no
benefits of minimally invasive techniques regarding the
postoperative atrophy of the multifidus muscle on MRI scans
as well as the clinical outcomes.

Arts et al conducted a double-blind randomized study on
patients with lumbar disk herniation, comparing tubular
diskectomy and conventional microdiskectomy in aspects
of creatine phosphokinase (CPK)1 and CPK2 serum concen-
trations, atrophy of the multifidus muscle by measuring CSA
on the MRI, and clinical outcomes measured with the VAS
scale.49 There were no significant differences in the serum
CPK concentration 1 day after the surgery and in atrophy
grade 1 year after the surgery between the groups. Postoper-
ative low-back pain improved in both groups; however, the
improvement at 1-year follow-upwas in favor of conventional
microdiskectomy.

In addition to being muscle sparing, minimally disruptive
techniques also strive to limit the amount of bony resection,
thus limiting the chance of creating postoperative spinal
instability.50,51 Specifically, disruption of the facet joints
combined with loss of the midline interspinous ligament
complex, as occurs during traditional laminectomy, can con-
tribute to flexion instability.52–54 Efforts to limit such poten-
tially destabilizing surgery have focused on developing
ligament-sparing techniques. For instance, unilateral lami-
notomies in which the spinous processes and corresponding
tendinous attachments of the multifidus muscle and the
supraspinous/interspinous ligaments are preserved theoreti-
cally minimize the chance of developing postoperative insta-
bility. Based on finite element analysis, limiting the extent of
bony resection can improve spinal stability. Limiting bone
and ligament removal resulted in greater preservation of
normal motion in the lumbar spine.55

As an example of MIS technique, we present a patient who
underwent minimally invasive TLIF with an expandable cage
at the L4–L5 level and subsequent percutaneous posterior
spinal fixation with pedicle screws (►Figs. 2–6).

According to the American Association of Neurological
Surgeons, MIS can be divided into percutaneous, endoscopic,
and minimal access.56 The vast majority of literature con-
cerning injuries to muscles describe minimal access proce-
dures or percutaneous screws insertion.

Considering MIS in the context of its less disruptive influ-
ence on paraspinal muscles, other features of MIS are worthy
of mention. These include a reported reduction of postopera-
tive pain, blood loss, and recovery time.36,37,57

Limited exposure and visualization frequently associated
with MIS raise the question about possible incomplete de-
compression of neural structures. To our knowledge, no
studies have directly assessed the adequacy of MIS decom-
pression; however, clinical outcome and reoperation rates
can be considered indirect markers of adequate decompres-
sion.58 However, worse short-term clinical results in MIS
diskectomy compared with microdiskectomy or open diskec-
tomy were described by Rasouli et al in a Cochrane review.37
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However, in long-term follow-up, large sample research and
meta-analysis revealed equivalent long-term outcome in
both MIS and open surgery groups.38–40,58–61

Infection rates associated with MIS are reported to be
lower than those reported for open surgery. Ee at al described
a 5.77 times lower infection rate in MIS TLIF, laminectomy,
and diskectomy when compared with open surgery.62 Parker
et al performed a cumulative calculation of reported infection
incidence from 10 MIS-TLIF and 20 open-TLIF cohorts and
described the surgical site infection rate as 0.6% forMISversus
4.0% for open TLIF.63

Another concern of MIS interbody procedures relatedwith
small exposure is obtaining a successful fusion. Meta-analysis
of fusion rates in MIS TLIF versus open surgery found the

fusion rates to be 94.8% versus 90.9%, respectively.64However,
bone morphogenetic protein 2 was much more commonly
used in the reported MIS TLIFs.64

Among the typical intraoperative complications of MIS,
dural tear, neural injuries,malposition of implants, guidewire
fracture, or nonunion can be listed.38,40 Incidental duroto-
mies and nerve root injuries were more commonly reported
in patients undergoing minimal invasive diskectomy with
total complication rate at a similar level.38,65 Published data
regarding complications rate vary; however, in comprehen-
sive reviews and meta-analyses they are comparable59,66

or even lower in MIS fusion.39 When reporting MIS

Fig. 2 Minimally invasive transforaminal lumbar interbody fusion with
expandible cage with surgeon operating through a tube expander.

Fig. 3 View of the intervertebral disk through the tube.

Fig. 4 Intraoperative X-ray: tube expander placed in proper position at
the L4–L5 level.

Fig. 5 Intraoperative X-ray: final cage expansion at the L4–L5 level.
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complications, the learning curve should be taken into
consideration.35,40

Conclusion

Minimally disruptive spine surgery aims to minimize surgical
morbidity, reduce postoperative recovery time, and improve
outcomes. These techniques rely on limiting surgical dissection
while safely achieving the goals of decompression and stabili-
zation. As minimally disruptive spine surgery continues to
evolve, the risks and benefits of various techniques must be
evaluated. Although short-term data are encouraging, long-
term prospective randomized studies are necessary to deter-
mine whether minimally disruptive approaches offer a signifi-
cant clinical advantage over traditional open procedures.
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