Antiproliferative Constituents of Geopropolis from the Bee *Melipona scutellaris*

Authors
Marcos Guilherme da Cunha 1, 4, Pedro Luiz Rosalen 1, Marcelo Franchin 1, Severino Matias de Alencar 2, Masaharu Ikegaki 1, Tanya Ransom 1, John Albert Beutler 4

1 Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
2 “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
3 Federal University of Alfenas, Alfenas, MG, Brazil
4 Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA

Affiliations

Key words
- Clusiaceae
- geopropolis
- *Melipona scutellaris*
- cytotoxity
- coumarins

Abstract

Fractionation of geopropolis from *Melipona scutellaris*, guided by antiproliferative activity against two colon cancer cell lines (COLO205 and KM12), led to the isolation of two new cinnamic acid esters, mammea-type coumarins 5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-propyl-coumarin (1) and 5,7-dihydroxy-6-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-phenylcoumarin (2), along with five known coumarins, mammeein (3), hydroxymammeigin (4), mammeisin (5), cinnamoyloxy-mammeisin (6), and mammeein (7), and the prenylated benzophenone ent-nemorosone (8). Among the isolated compounds, 5 and 7 showed the highest cell growth inhibition against COLO205 (GI50 9.7 and 10.7 µM, respectively) and KM12 (GI50 12.0 and 10.9 µM, respectively). The presence of these compounds suggests that plants of Clusiaceae family, especially the genera *Kielmeyeria* and *Clusia*, are likely to be major sources of geopropolis produced by *M. scutellaris*.

Supporting information available online at http://www.thieme-connect.de/products

Introduction

Propolis, a resin collected by bees from several plants, has been reported to possess a great variety of biological activities. The wide range of activities is a consequence of its complex chemical composition, which can vary according to plant source, season, and bee species [1, 2]. Most of the studies available in the international literature concern propolis collected by *Apis mellifera*, whereas other types of propolis collected by different species of bees have been sparsely studied. *Melipona scutellaris* Latreille 1811, a native Brazilian stingless bee, is an important pollinator and recently has been considered threatened. This primitive bee produces a different type of propolis made of plant resins, wax, and soil, called geopropolis [3]. Our group has previously demonstrated a promising range of biological activities including anti-inflammatory [4], antimicrobial as well as antiproliferative [5]. Our previous studies have suggested the presence of cinnamic acid derivatives as well as prenylated compounds in this geopropolis [5], although no study has yet described the chemical composition of geopropolis from *M. scutellaris*. Therefore, a bioassay-guided fractionation and isolation based on the antiproliferative activity against colon cancer cell lines was undertaken, which yielded two new compounds and six known compounds. The compounds were tested in the NCI 60-cell screen in order to assess their cytotoxic profile.

Results and Discussion

In order to isolate and identify the compounds present in geopropolis, we carried out a fractionation of the ethanolic extract of geopropolis (EEGP) from *M. scutellaris* guided by growth inhibitory activity against the colon cancer cell lines COLO205 and KM12. Bioguided fractionation of the EEGP using diol, Sephadex LH-20, and normal-phase HPLC separation led to the isolation of one new 4-propyl coumarin (1), one new 4-phenyl coumarin (2), five known coumarins (3–7), and one known benzophenone (8) (Fig. 1). The structures were determined by spectroscopic analysis, including 1D and 2D NMR (COSY, HSQC and HMBC) and HRESIMS experiments. The structures of the known compounds were determined by comparing their spectroscopic data with the literature.

Compound 1 was isolated as a yellowish powder with \([\alpha]_D^27 = 0.8\) (c, 0.1, MeOH). The HREIMS of 1 showed a molecular peak ion at \(m/z\) 517.2269 [M - H]⁺ supporting a molecular composition of \(C_{31}H_{34}O_7\), with 15 degrees of unsaturation. On the basis of the \(^1\)H and \(^13\)C NMR spectra and HMBC correlations of 1 (Table 1, Fig. 2), it was possible to observe a characteristic singlet at \(\delta_H 5.99\) and \(\delta_C 108.4\) (C-3), which correlated to a carbonyl at C-2 (\(\delta_C 160.8\)) and to an aromatic carbon at C-4a (\(\delta_C 103.7\)), along with two hydroxyl groups at the carbons C-5 and C-7 at \(\delta_C 161.6\) and \(\delta_C 165.6\), respectively, suggesting a 5,7-dihydroxy coumarin skeleton [6, 7]. In addition, the NMR data also showed the presence of an acyl side chain characterized by the presence of \(1H^-1H\) COSY and HMBC correlations between the methylene group at H-2′ (dd, \(\delta_H 3.02, J = 15.5, 6.0\) Hz and \(\delta_H 3.38, J = 15.5, 7.4\) Hz, respectively), the methine at H-3′ (\(\delta_H 6.43\) (d, \(J = 6.0\) Hz, H-7′) and \(\delta_H 7.60\) (d, \(J = 16.0\) Hz, H-8′), which correlate to the aromatic carbon at \(\delta_C 134.4\) (C-9′) and the ester carbon at \(\delta_C 167.0\) (C-6′). In contrast to compound 1, which showed a prenyl group at position 8, compound 2 exhibited no substituent at this position, which was confirmed by the presence of a singlet at \(\delta_H 6.06\) (H-8) correlated to the aromatic carbon C-4a (\(\delta_C 102.3\)). The large bathochromic shift after alkalai addition confirmed the position of the side chain at C-6 [7]. On the basis of these assignments, the structure of compound 2 was established as 5,7-dihydroxy-6-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-phenyl-coumarin.

The other known compounds were isolated and their structures were determined by comparing spectroscopic data with literature values. They were identified as mammein (3) [8, 9], hydroxymammein (4) [9], mammesin (5) [6], cinamomoyxymammein (6) [7], mammem (7) [10], and the benzophenone ent-nemorosone (8) [11]. All compounds were tested in the NCI 60-cell panel at an initial concentration of \(10^{-5}\) M. As shown in Table 2, at this concentration, compounds 5 and 7 showed a higher mean percent of inhibition, with 56 and 83% growth inhibition, respectively, and were submitted to the full five-dose screen; however, their cell line selectivity was modest (see Supporting Information). Nonetheless, a COMPARE [12, 13] study demonstrated a substantial correlation between the cell growth inhibition pattern of the crude geopropolis extract and that of compounds 5 and 7 (Table 3). Some studies have demonstrated that the antiproliferative activity of synthetic coumarins might be attributed to the presence of the hydroxyl group at C-7 [14]. However, there is no report about the influence of phenyl or propyl at C-4 and how those groups would change the activity of these compounds. In the same way, the presence of the cinamomoyl moiety seems to reduce the antiproliferative activity of those coumarins. Both coumarins and benzophenones have been reported to have antiproliferative activity [15–17]. However, the cinamic acid esters of coumarins have no reported biological activity. The elucidation of the compounds present in geopropolis hints at the possible botanical origin of the geopropolis. The known coumarins reported herein were previously isolated from plants of the genus *Mammea* (Clusiaceae) [6] and recently reported as ma-
is well known from the Clusiaceae [11]. The genus coefficients of > 0.60 (Clusiaceae extracts out of all plant extracts tested, with Pearson supports this preference, as a COMPARE study using the geoprop-
the resin with which they make geopropolis. The NCI 60 data also preferentially visit Clusiaceae plant species in this area to collect geopropolis samples, which leads us to propose that the bees
Guilherme da Cunha M et al. Antiproliferative Constituents of Kielmeyera (Clusiaceae) [7 –9]. Ent-nemoro-
sone (8) was recently synthesized; its enantiomer nemorosone is well known from the Clusiaceae [11]. The genus Kielmeyera is native to the state of Bahia, which is the place of collection of our geopropolis samples, which leads us to propose that the bees preferentially visit Clusiaceae plant species in this area to collect the resin with which they make geopropolis. The NCI 60 data also supports this preference, as a COMPARE study using the geopropolis extract data as a seed returned a predominance (10/14) of Clusiaceae extracts out of all plant extracts tested, with Pearson coefficients of > 0.60 (Table 1S, Supporting Information). Interestingly, the presence of prenylated benzophenones from Clusiaceae was previously reported in A. mellifera propolis type 6 [18], indicating that bees from different species may utilize the same plant sources for collecting propolis. Also, the type of coumarins we found have been reported as insecticidal compounds, indicating that the bees may use coumarin-containing resins to protect the hive from intruding insects [19]. Further, this is the first report describing coumarins as major components of any kind of Brazilian propolis. Last, most of the compounds described here have no previous report of biological activity, so this is the first report on their pharmacological properties.

<table>
<thead>
<tr>
<th>1</th>
<th>δC, type</th>
<th>δH, m (J in Hz)</th>
<th>HMBC</th>
<th>2</th>
<th>δC, type</th>
<th>δH, m (J in Hz)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>160.8, C</td>
<td>160.0, C</td>
<td></td>
<td>3</td>
<td>108.4, CH</td>
<td>5.91, s</td>
<td>2, 4a, 1’’’’</td>
</tr>
<tr>
<td>4</td>
<td>142.6, C</td>
<td>157.9, C</td>
<td></td>
<td>4</td>
<td>103.8, C</td>
<td>102.3, C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>161.6, C</td>
<td>163.7, C</td>
<td></td>
<td>6</td>
<td>93.0, C</td>
<td>103.6, C</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>165.5, C</td>
<td>167.2, C</td>
<td></td>
<td>8</td>
<td>112.3, C</td>
<td>99.3, CH</td>
<td>6.06, s</td>
</tr>
<tr>
<td>8a</td>
<td>156.7, C</td>
<td>158.2, C</td>
<td></td>
<td>1’</td>
<td>204.1, C</td>
<td>204.0, C</td>
<td></td>
</tr>
<tr>
<td>2’</td>
<td>48.4, CH2</td>
<td>3.20, dd (15.5, 6.0)</td>
<td>1’’, 3’, 4’, 5’’</td>
<td>1’’</td>
<td>48.1, CH2</td>
<td>3.23, dd (15.8, 7.3)</td>
<td>1’’, 3’, 5’, 4’’</td>
</tr>
<tr>
<td>3’</td>
<td>39.0, CH</td>
<td>2.66, m</td>
<td>2’, 4’, 5’’</td>
<td>3’’</td>
<td>30.4, CH</td>
<td>2.68, m</td>
<td>1’, 2’, 5’, 4’’</td>
</tr>
<tr>
<td>4’</td>
<td>69.0, CH2</td>
<td>4.20, t (6.1)</td>
<td>2’, 3’, 4’, 6’</td>
<td>4’’</td>
<td>68.9, CH2</td>
<td>4.21, t (6.1)</td>
<td>2’, 3’, 5’, 6’</td>
</tr>
<tr>
<td>5’</td>
<td>16.3, CH1</td>
<td>1.13, d (6.8)</td>
<td>2’, 3’, 5’’</td>
<td>5’’</td>
<td>16.3, CH1</td>
<td>1.03, d (6.8)</td>
<td>2’, 3’, 4’’</td>
</tr>
<tr>
<td>6’</td>
<td>167.2, C</td>
<td>167.2, C</td>
<td></td>
<td>7’</td>
<td>117.4, CH</td>
<td>6.37, d (16.0)</td>
<td>6’, 8’, 9’</td>
</tr>
<tr>
<td>8’</td>
<td>144.8, CH</td>
<td>7.55, d (16.0)</td>
<td>6’, 7’, 9’, 10’, 14’</td>
<td>9’</td>
<td>144.9, CH</td>
<td>7.60, d (16.0)</td>
<td>5’, 7’, 9’, 10’, 14’</td>
</tr>
<tr>
<td>10’</td>
<td>134.4, C</td>
<td>134.5, C</td>
<td></td>
<td>11’</td>
<td>128.0, CH</td>
<td>7.53</td>
<td>8’, 12’</td>
</tr>
<tr>
<td>12’</td>
<td>128.0, CH</td>
<td>7.39</td>
<td>9’</td>
<td>12’</td>
<td>130.1, CH</td>
<td>7.38</td>
<td>130.2, CH</td>
</tr>
<tr>
<td>1’’</td>
<td>21.0, CH2</td>
<td>3.29, d (7.2)</td>
<td>5’, 7’, 8’, 12’</td>
<td>1’’’</td>
<td>121.7, CH</td>
<td>5.02, m</td>
<td>1’, 5’, 3’, 4’’’</td>
</tr>
<tr>
<td>3’’</td>
<td>131.8, C</td>
<td>127.2, CH</td>
<td>127.8, CH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4’’</td>
<td>24.6, CH3</td>
<td>1.65, s</td>
<td>2’, 3’, 5’’</td>
<td>4’’’</td>
<td>16.8, CH3</td>
<td>1.75, s</td>
<td>2’, 3’, 4’’</td>
</tr>
<tr>
<td>6’’</td>
<td>138.9, C</td>
<td>127.0, CH</td>
<td>127.8, CH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1’’’’</td>
<td>38.9, CH2</td>
<td>3.01, t (7.2)</td>
<td>3.4a, 5, 2’’’’’’</td>
<td>1’’’’’</td>
<td>23.2, CH2</td>
<td>1.65, m</td>
<td>1’, 3’’’’’</td>
</tr>
<tr>
<td>3’’’’’</td>
<td>33.1, CH3</td>
<td>1.02, t (7.3)</td>
<td>1’, 2’’’’’’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Overlapped signals

| Table 1 | 1H and 13C NMR data for compounds 1 and 2 (600 and 150 MHz, CD3OD). |

Materials and Methods

General procedures

Optical rotations ([α]D) were measured on a Perkin-Elmer 241 polarimeter in a 100×2 mm cell (units 10−1 deg cm2 g−1). LCMS data were obtained using a Hewlett-Packard Series 1100 MSD, whereas HREIMS data were acquired on an Agilent 6520 Accurate Mass Q-TOF instrument with internal reference masses calibrated at 121.050 87 and 922.009 79, both within 5 ppm. The NMR experiments were performed on a Bruker 600 MHz NMR spectrometer. 1H and 13C spectra were referenced to deuterated solvent peaks. The 60 × 2.5 cm i.d. Sephadex LH-20 columns attached to a model UA-6 UV detector and Foxys 200 fraction collector (Teledyne Isco) were used for fractionation of the extract, whereas purification of the compounds was performed using a Varian ProStar 210/215 solvent delivery module HPLC equipped with a Varian ProStar 325 UV-vis detector, operating under Star 6.41 chromatography workstation software. All solvents and chemicals were of analytical grade.

Extraction and isolation

Crude samples of geopropolis from M. scutellaris (native stingless bee) were obtained from the coastal area of the city of Entre Rios (12°22’S and 37°54’W), state of Bahia, Northeast Brazil. Samples of M. scutellaris bee were deposited in the Paulo Nogueira Neto
Geopropolis samples were extracted using ethanol 70% (1:7, w/v) and dried as described elsewhere [20]. Two grams of this ethanolic extract of geopropolis (EEGP, NSC# N192723) was coated on diol bonded phase media and eluted with a series of solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, acetone, and methanol) yielding five fractions (A–E) of 40, 500, 170, 60, and 870 mg, respectively. Fraction B was the most active and was selected for further fractionation and isolation of compounds.

Fraction B (89.6 mg) was chromatographed on a 60 × 2.5 cm i.d. Sephadex LH-20 column and eluted with CH2Cl2/MeOH (1:1, v/v), with 300 drop fractions collected in each tube. On the basis of TLC and UV traces, they were combined into three fractions (B1, B2, and B3). Fractions B2 and B3 showed activity and were further purified by HPLC. The compounds were isolated using a semipreparative (10 × 250 mm, 5 µm) cyano column with a hexane/isopropanol gradient (0–3 min: 95% hexane; 3–24 min: 95–80% hexane, 24–26 min: 80% hexane, 26–29 min: 80–95% hexane, 29–31 min: 95% hexane, flow rate 4 mL/min) as the solvent and the UV detector at λ = 230 nm. One unknown 4-propyl-coumarin, 1 (0.4 mg), one unknown 4-phenyl-coumarin, 2 (1.1 mg), five known coumarins, 3 (1.5 mg), 4 (2.2 mg), 5 (1.5 mg), 6 (11.4 mg), and 7 (0.5 mg), and the benzophenone 8 (0.6 mg) were obtained.

Isolates

5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-propylcoumarin (1; NSC# 781047): yellow solid; [α]D 27° −0.8 (c, 0.1, MeOH); 1H and 13C (600 MHz, CD3OD) NMR data, see Table 1; HREIMS [M + H]+ at m/z 517.2269 (calcd. for C31H33O7, 517.2232).

5,7-dihydroxy-6-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-phenyl-coumarin (2; NSC# N192723) was coated on diol bonded phase media and eluted with a series of solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, acetone, and methanol) yielding five fractions (A–E) of 40, 500, 170, 60, and 870 mg, respectively. Fraction B was the most active and was selected for further fractionation and isolation of compounds.

Fraction B (89.6 mg) was chromatographed on a 60 × 2.5 cm i.d. Sephardex LH-20 column and eluted with CH2Cl2/MEOH (1:1, v/v), with 300 drop fractions collected in each tube. On the basis
Hydroxymammeigin (4; NSC# 781050): a yellow solid; [α]27D + 6.1 (c 0.23, MeOH); the 1H and 13C NMR data were identical with those reported elsewhere [9]. Mammeixin (5; NSC# 781046): a yellow solid; [α]27D – 0.8 (c 0.63, MeOH); the 1H and 13C NMR data were identical with those reported elsewhere [6]. Cinnamoyloxy-mammeisin (6; NSC#781 051): a yellow solid; the 1H and 13C NMR data were identical with those reported recently [11].

Cytotoxicity assay on colon cancer cells

The isolation of the compounds was bioguided by the activity against colon cancer cell lines COLO205 and KM12 in a two-day drug exposure with a formazan (XTT) endpoint, developed by the MTL Assay Development and Screening Section. Cells were cultured in RPMI-1640 medium supplemented with 2 mM l-glutamine and 10% fetal bovine serum, and then were incubated in a 5% CO2, 95% air, 10% fetal bovine serum without antibiotics. After harvest, cells were counted using a Cellometer Auto T4 cell counter, plated in 96-well plates containing 5000 cells/well and then were incubated in a 5% CO2, 95% air, 10% fetal bovine serum without antibiotics. After a 48-h incubation period, cell viability was accessed with a formazan (XTT reagent) endpoint [13].

NCI 60 data was generated as previously reported [12]. The positive control standard was adriamycin (NSC#123127). The historic mean G30 value for the control was 93.5 nM (n = 1816).

Supporting information

NMR spectra of compounds 1 and 2 and NCI 60 data for all compounds are available as Supporting Information.

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and by FAPESP (#2011/23635–6 and #2012/22002–2). The authors are grateful to Mr. José Emídio Borges de Souza for providing the geopropolis samples. We thank D. Newman for help in documenting the samples, the Natural Products Support Group at NCI-Frederick, and S. Tarasov, M. Dyba (Biophysics Resource Core, Structural Biophysics Laboratory, CCR), and H. Bokesch (MTL) for assistance with high-resolution mass spectrometry as well as Kirk Gustafson for NMR support. We also thank Dr. Gordon Cragg for making the execution of this work possible.

Conflict of Interest

The authors have no conflicts of interest to declare.

References