Abstract

Licorice is one of the oldest and most frequently used herbs in traditional Chinese medicine. It contains more than 20 triterpenoids and 300 flavonoids. In recent years, a lot of studies have reported that the active compounds isolated from licorice possess antitumor, antimicrobial, antiviral, anti-inflammatory, immunoregulatory, and several other activities that contribute to the recovery and protection of the nervous, alimentary, respiratory, endocrine, and cardiovascular systems. In this paper, nine different pharmacological activities of licorice are summarized. The active compounds responsible for these pharmacological activities, the molecular mechanisms, and in vivo and in vitro studies are listed in detail. Furthermore, the clinical therapeutic and toxicity studies of licorice are also discussed. We hope this work can provide a basis for further studies concerning with the safe and effective use of licorice.

Abbreviations

GLD: glabridin
GP: glycyrrhiza polysaccharides
GSH: glutathione
HCV: hepatitis C virus
HMGB1: high-mobility group box 1
HMGP: high-mobility group protein
HSV: herpes simplex virus
IFN: interferon
iNOS: inducible nitric oxide synthase
ISL: isoliquiritigenin
ISOA: isoangustone A
IL: interleukin
JNK: Jun N-terminal kinases
LCA: licochalcone A
LCB: licochalcone B
LCC: licochalcone C
LCD: licochalcone D
LCE: licochalcone E
LIA: licorisoflavon A
LID: licoricidin
LPS: lipopolysaccharide
LTG: liquiritigenin
MHC: major histocompatibility complex
MKP: mitogen-activated protein kinase phosphatase
MMP: matrix metalloproteinase
NF-κB: nuclear factor-kappa B
PGE2: prostaglandin E2
PI3K: phosphatidyl inositol 3-kinase
PMN: polymorph nuclear
PPARγ: peroxisome proliferator-activated receptor gamma
PON2: paraoxonase 2
PrV: pseudorabies virus
PTP1B: protein tyrosine phosphatase 1B
ROS: reactive oxygen species
Smac: second mitochondria-derived activator of caspases
SOD: superoxide dismutase
TDC: 2,2′,4′-trihydroxychalcone
TGF: transforming growth factor
Introduction

Three original plants, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L., are prescribed as licorice in the Chinese Pharmacopoeia [1]. They belong to the family Leguminosae and are widespread in Gansu, Shanxi, Inner Mongolia Autonomous Region, Hebei, Heilongjiang, Ningxia, Qinghai, and many other provinces in China [2]. Among them, the first three are believed to be authentic regions of licorice since ancient times in China [3]. It is also widespread in Spain, Persia, India, Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, and Russia. As shown in Fig. 1, licorice is a kind of dwarf shrub and has oval leaflets, white or purplish flower clusters, flat pods, a main tap-root, and numerous runners [2].

In China, the earliest written reference about licorice is Shen Nong Ben Cao Jing, the first Chinese dispensary. Since then, the roots and rhizomes of licorice have been widely used in traditional Chinese medicine for their effects of nourishing qi, alleviating pain, tonifying the spleen and stomach, eliminating phlegm, and relieving coughing. Licorice is honored as the reconciler in Chinese herbal compound prescriptions. With the development of modern pharmacology, many valuable and important pharmacological activities of licorice have been discovered. The main reasons that licorice has potent effects and wide applications are due to its various natural active compounds. To date, more than 20 triterpenoids and 300 flavonoids have been isolated from licorice. Many researches have reported that these active compounds possess antitumor, antimicrobial, antiviral, anti-inflammatory, immunoregulatory, and several other activities that contribute to the recovery and protection of the nervous, alimentary, respiratory, endocrine, and cardiovascular systems. Nowadays, licorice extract, active compounds, and preparations have been used for the treatment of gastric ulcers [4], liver diseases [5], Addison’s disease [6], and many other diseases. In this paper, nine pharmacological activities of licorice, the active compounds, and the molecular mechanisms are summarized. The clinical use and toxicity of licorice is also discussed.

Main Compounds Isolated from Licorice and Their Pharmacological Activities

To date, more than 20 triterpenoids, such as GC and GA, and 300 flavonoids, such as ISL, ISOA, LCA, LCC, LCD, LCE, GLD, and GP, have been isolated from licorice. Many pharmacological researches have demonstrated that they possess various pharmacological activities. The main compounds with different pharmacological activities are listed in Figs. 2 and 3.

Antitumor activity

The high mortality of cancer is one of the leading causes of death in humans. Using natural compounds without side effects has attracted the attention of many researchers. Many studies have proven that various natural compounds in licorice possess effective antitumor activity, including three triterpenoids, GC [7,8], GA [9], and 11-DOGA [10], and six flavonoids, ISOA [11], GLD [12], ISL [13], LCA [14,15], LCB [16], and LCE [17]. The antitumor compounds, the possible mechanisms for cancer prevention, cancer types, and correlated references are listed in Table 1.

Fig. 1 Glycyrrhiza uralensis Fisch. (Color figure available online only.)
the FAK/Rho signaling pathway [12]. In summary, the compounds of licorice exert their antitumor activities mainly by attenuating the level of cytokines, blocking cell cycle progression, and inducing cancer cell apoptosis. In addition to several single compounds isolated from licorice, some researchers also found that the ethanol extract and hexane/ethanol extract of roasted licorice had antitumor activity [28,29].

In vitro studies have shown that ISOA has been applied to SW480 human colorectal adenocarcinoma cells, DU145 human prostate cancer cells, and 4T1 murine breast cancer cells [11,29]; ISL has been applied to HeLa human cervical cancer cells and MDA-MB-231 human breast cancer cells [13,27]; GC has been applied to WEHI-3 mouse leukemia cells [18]; GA has been applied to DU-145 prostate cancer cells [19]; and LCA has been applied to MKN-28, AGS, MKN-45 gastric cancer cells, HA22T/VGH, SK-Hep-1, HepG2 human hepatocellular cancer cells, KB human oral cancer cells, and T24 bladder cancer cells [22–26,30].

In vivo studies have shown that GC has been applied to inhibit 1,2-dimethyhydrazine-induced colon precancerous lesions of Wistar rats [8], while GA has been applied to gastric cancer and inhibits tumor growth in a nude mouse model [10]. Glabridin inhibits MDA-MB-231 breast cancer angiogenesis in a nude mouse model [12]. LCB inhibited MB49 bladder tumor growth in a C57BL/6 mouse model [16]. LCE suppressed 4T1 mammary tumor growth and lung metastasis in the mammary fat pads in a syngeneic BALB/c mouse model [17]. ISOA significantly suppressed PTEN-deleted human prostate tumor growth and SK-MEL-28 human melanomay tumor growth in xenograft mouse models [20,21]. All these indicate that licorice represents interesting and important hits for antitumor drug discovery and development.
Anti-inflammatory activity

Inflammation plays an important role in epidemic diseases among populations. Licorice is an excellent alternative choice for the treatment of inflammation, especially for children. To date, many reports have shown that two triterpenoids, GC and 18β-GA, and several flavonoids isolated from licorice, such as GLD, ISL, LCA, LCB, LCC, LCD, LCE, ISOA, DGC, LID, LIA, EC, and glycurallin B, all possess anti-inflammatory activity. The anti-inflammatory compounds, the possible mechanisms for inflammation prevention, inflammatory types, and correlated references are listed in Table 2.

The mechanisms of the anti-inflammatory activity of licorice have been explored deeply. It has been widely accepted that GC and 18β-GA suppress proinflammatory cytokine COX-2, iNOS, TNF-α, HMGP 1, PGE2, myeloperoxidase, DPPH radicals, IL-6, IL-10, TGF-β, and NF-κB, inhibit the translocation of toll-like receptor 4 to lipid rafts, and activate ABCA1 [31–38]. GLD and ISL inhibit the release of NO and IL-1β [39], and LID and LIA inhibit the activation of NF-κB p65 and the secretion of IL-6, chemokine (C-C motif) ligand 5, MMP-7, MMP-8, and MMP-9 [40]. EC scavenges ABTS+ [41]. DGC increases the expression of MKP-1 and hemeoxygenase-1, and decreases DPPH, ABTS+, singlet oxygen radicals, NF-κB DNA binding activity, and the production of ROS [42,43]. LCA reduces the mRNA expression of acidic mammalian chitinase, chitinase 3-like protein 4, E-selectin, Muc5ac, CC11, CCR3, and the serum levels of ovalbumin-specific immunoglobulin E and G. It also inhibits the production of NO, IL-6, PGE2, and ROS [41,45]. LCB and LCD inhibit the activation of PKA, and reduce NO, TNF-α, MCP-1, ABTS+, ROS, IL-6, and PGE2 [46,48]. LCC decreases the expression and activity of iNOS and modulates the antioxidant network activity of SOD, catalase, and glutathione peroxidase activity [47]. LCE inhibits the expression of iNOS, COX-2, AKT, p38 MAPK, IL-12p40, and the phosphorylation of protein kinase C-JNK and extracellular ERK 1/2 [49,50]. In other words, the compounds isolated from licorice exert their anti-inflammatory activity through the inhibition of COX, PGE2, cytokines and their receptors, and nuclear transcription factor as well as through the removal of oxygen free radicals.

Fig. 3 Chemical structures of LCA, LCB, LCC, LCD), LCE, glycyrol, and glabrol. (Color figure available online only.)
Table 1 The antitumor compounds isolated from licorice and their possible mechanisms for cancer prevention.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for cancer prevention</th>
<th>Cancer types</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>GC attenuates the level of TNF-α and declines the depletion of the mucous layer and the shifting of sialomucin to sulphomucin. GC induces apoptosis through the caspase- and mitochondria-dependent pathways.</td>
<td>Colon carcinoma</td>
<td>[8]</td>
</tr>
<tr>
<td>18β-GA</td>
<td>18β-GA induces apoptosis and prevents the invasion of DU-145 cells on Matrigel-coated transwells via the downregulation of NF-κB, vascular endothelial growth factor, and NMP-9 expression. 18β-GA induces apoptosis and cell cycle arrest in the G2 phase.</td>
<td>Prostate cancer</td>
<td>[19]</td>
</tr>
<tr>
<td>11-DOGA</td>
<td>11-DOGA induces apoptosis and cell cycle arrest in the G2 phase.</td>
<td>Gastric cancer</td>
<td>[10]</td>
</tr>
<tr>
<td>ISOA</td>
<td>ISOA induces mitochondrial outer membrane permeabilization and the release of cytochrome c. As a potent molecular inhibitor of CDK2 and mammalian target of rapamycin, ISOA suppresses cell cycle progression at the G1 phase and blocks the expression of G1 phase regulatory proteins.</td>
<td>Colorectal cancer</td>
<td>[11]</td>
</tr>
<tr>
<td>LCA</td>
<td>LCA induces a dose-dependent inhibition of uridylphosphate adenosine activity and expression, reduces mRNA levels, and inhibits the expression of phospho-JNK and phospho-map kinase 4 in 5K-Hep-1 cells. LCA blocks cell cycle progression at the G2/M transition and induces apoptosis. LCA increases intracellular rROS levels resulting in an oxidative stress status. LCA induces apoptosis by endoplasmic reticulum stress via a phospholipase Cy1-, Ca2+-, and reactive ROS-dependent pathway. LCA induces apoptosis by a caspase-dependent Fas-mediated death receptor pathway.</td>
<td>Liver cancer</td>
<td>[22]</td>
</tr>
<tr>
<td>LCB</td>
<td>LCB inhibits T24 or EJ cell line proliferation in a concentration-dependent and time-dependent manner.</td>
<td>Bladder cancer</td>
<td>[24]</td>
</tr>
<tr>
<td>LCE</td>
<td>LCE inhibits the migration and invasion of both MDA-MB-231 human breast cancer cells and 4T1 cells by inhibiting the upstream signaling pathways.</td>
<td>Breast cancer</td>
<td>[17]</td>
</tr>
<tr>
<td>ISL</td>
<td>ISL inhibits the migration and invasion of MDA-MB-231 cells by inhibiting the upstream signaling pathways.</td>
<td>Breast cancer</td>
<td>[27]</td>
</tr>
</tbody>
</table>

Many in vitro studies have shown that GC has been used in Leishmania donovani-infected macrophages [36]. GA, GLD, and ISL have been used in LPS-stimulated macrophage models [35, 39]. LID and LIA have been used in Antinobacillus actinomycetemcomitans LPS-treated macrophages [40]. LCA, LCB, and LCE have been used in LPS-induced RAW 264.7 macrophage cells [41, 50], and DGC has been used in LPS-induced BV-2 microglia and mice hippocampal cells [42, 43].

In vivo and clinical studies have shown that GC has been used in the postischemic brain with a middle cerebral artery occlusion mouse model [31], in an LPS-induced acute lung injury mouse model, and in a mastitis mouse model [33, 34]. GA has been used to treat oxidative and neuronal damage in brain tissue caused by global cerebral ischemia/reperfusion in a C57BL/6j mouse model [38]. LCA has been used in childhood atopic dermatitis and in a murine model of asthma [44, 45]. LCE has been used in TPA-induced mice ear edema [49]. Many other studies have also shown that licorice extracts have benefits in the treatment of acute and chronic inflammatory conditions [51, 52]. All of the above indicates that it is very important and meaningful to study the anti-inflammatory activity of licorice.

Antiviral activity
Licorice preparations have been used to treat viral hepatitis since the late 1970s. In recent years, many studies have shown that licorice extract has significant antiviral activity against HIV, severe acute respiratory syndrome-coronavirus (SARS), H5N1, influenza virus (H3N2), rotavirus, respiratory syncytial virus, varicella zoster virus, coxsackie virus, and enterovirus [53–56]. However, as far as a single compound is concerned, although many compounds have been isolated from licorice, only two triterpenoids, GC and 18β-GA, have been reported to possess antiviral activity. They were found to have a significant positive impact on HIV, H3N2, HSV, DHV, HCV, PrV, and IAV. The antiviral compounds, the possible mechanisms for antiviral activity, virus types, and correlated references are listed in Table 3.

Many in vitro experiments have shown that GC inhibits HCV by suppressing the release of infectious particles [57], inhibits HSV by depressing the cellular adhesion [58], inhibits influenza virus by reducing HMGB1 binding to DNA and suppressing interactions between viral macromolecules and host proteins [64], inhibits HIV by preventing the virus from replication [61], and inhibits H5N1 not by interfering with H5N1 replication, but by controlling H5N1-induced proinflammatory gene expression [60]. The dispute about whether GC inhibits virus replication still needs further study. GC also interacts with the cell membrane and reduces endocytic activity [30], and causes deregulation of generating the mature forms of viral mRNA encoding, which is a process important for viral stability [62]. GA shows significant antiviral activity against rotavirus replication by reducing the amounts of viral proteins VP2, VP6, and NSP2 at a step or steps subsequent to virus entry [66]. It also effectively inhibits HIV-1 by reducing the accumulation of virus antigen p24 and protects cells from the cytopathogenic action of the virus [67].

In vivo studies have shown that GC demonstrates a pronounced lymphocytic proliferation response on white Pekin ducklings, and reveals a good immune stimulant and antiviral effect against DHV [59]. A combination of glutamyl-tryptophan and GC exerts a protective effect in reducing the death of H3N2 virus-infected mice [63]. In summary, GC and GA exert antiviral activity mainly by inhibiting the replication and release of the virus, suppressing interactions between the virus and host cells, activating immune re-

Yang R et al. The Pharmacological Activities... Planta Med 2015; 81: 1654–1669
sponses in host cells, and attenuating a virus-induced anti-inflammatory response.

Immunoregulatory activity
In the last five years, a lot of researches demonstrated the immunoregulatory activity of Licorice. Among the compounds of Licorice, GP is believed to play an important role in stimulating the body’s immune ability. It affects the body’s nonspecific and specific immune functions and activates immune cells [68, 69]. In addition, GC, 18β-GA, LCA, LTG, and glycyrol also showed immunoregulatory activity [9, 70–74]. The compounds with immunoregulatory activity, the possible mechanisms for the immunoregulatory activity, the potential therapeutic effects, and the correlated references are listed in Table 4.

GC shows a pronounced lymphocytic proliferation response and increases the level of IL-4, IL-5, IL-10, IL-12, IL-13, and IFN-γ, and

Table 2 The anti-inflammatory compounds isolated from licorice and their possible mechanisms for inflammation prevention.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for inflammation prevention</th>
<th>Inflammatory types</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>GC suppresses proinflammatory COX-2, iNOS, and TNF-α, and inhibits phosphorylation and secretion of HMGP 1. GC scavenges DPPH radicals. GC attenuates myeloperoxidase activity, the expression of TNF-α, IL-6, and NF-κB, and the levels of cholesterol of lipid rafts. Inhibits the translocation of toll-like receptor 4 to lipid rafts. Activates ABCA1. GC inhibits the myeloperoxidase activity and the release of NO as well as the expression of COX-2 and iNOS. GC suppresses NF-κB via the PI3K pathway, inhibits the production of NO, PGE2, and ROS, and reduces the protein and mRNA levels of iNOS and COX-2. GC enhances the expression of INOS2 along with the inhibition of COX-2 and down-regulates IL-10 and TGF-β.</td>
<td>Postischemic brain with middle cerebral artery occlusion Chronic liver diseases Mastitis Acute lung injury LPS-induced inflammatory response LPS-induced inflammatory response Lethmania donovani-infected macrophages</td>
<td>[31] [32] [33] [34] [35] [36]</td>
</tr>
<tr>
<td>18β-GA</td>
<td>18β-GA reduces mRNA expression of TNF-α, IL-1β, and IL-6. 18β-GA attenuates the generation of excessive NO, PGE2, and ROS by suppressing the expression of proinflammatory genes through the inhibition of NF-κB and PI3K activity. It also reduces the protein and mRNA levels of iNOS and COX-2. 18β-GA increases antioxidant defense systems and decreases lipid peroxidations.</td>
<td>Indomethacin-induced small intestinal damage</td>
<td>[37] [38] [39]</td>
</tr>
<tr>
<td>GLD</td>
<td>GLD inhibits the release of NO and IL-1β.</td>
<td>LPS-induced J74A.1 murine macrophages</td>
<td>[40]</td>
</tr>
<tr>
<td>ISL</td>
<td>ISL inhibits the production of NO, IL-1β, and IL-6.</td>
<td>LPS-induced J74A.1 murine macrophages</td>
<td>[41]</td>
</tr>
<tr>
<td>LID</td>
<td>LID inhibits the secretion of IL-6, chemokine (C-C motif) ligand 5, and the secretion of MMP-7, -8, and -9. It also reduces the activation of NF-κB p65.</td>
<td>Periodontitis</td>
<td>[42]</td>
</tr>
<tr>
<td>LIA</td>
<td>LIA inhibits the secretion of IL-6 and chemokine (C-C motif) ligand 5, and the secretion of MMP-7, -8, and -9. It also reduces the activation of NF-κB p65.</td>
<td>Periodontitis</td>
<td>[43]</td>
</tr>
<tr>
<td>EC</td>
<td>EC scavenges the ABTS radical dot+.</td>
<td>Lipid peroxidation in rat liver microsomes</td>
<td>[44]</td>
</tr>
<tr>
<td>DGC</td>
<td>DGC increases MKP-1 expression, suppresses the inflammation-mediated neurodegeneration and the production of TNF-α, and decreases NF-κB DNA binding activity. DGC scavenges DPPH, ABTS+, and singlet oxygen radicals, reduces ROS generation and cytotoxicity, and increases the expression of hemeoxygenase-1.</td>
<td>LPS-induced BV-2 microglia Glutamate-induced hippocampal HT2 cells</td>
<td>[45]</td>
</tr>
<tr>
<td>LCA</td>
<td>LCA decreases transepidermal water loss. LCA reduces the mRNA expression of acidic mammalian chitinase, chitinase 3-like protein 4, E-selectin, Muc5ac, CCL11, and CCR3 in lung tissues, and serum levels of ovalbumin-specific immunoglobulin E and G. It also inhibits cytokine release. LCA inhibits LPS-induced ROS production. LCA inhibits the production of NO, IL-6, and PGE2. LCA exhibits potent inhibition of lipid peroxidation. LCB inhibits LPS-induced ROS production. LCC decreases the expression and activity of iNOS, and modulates the antioxidant network activity of SOD, catalase, and glutathione peroxidase activity. LCD inhibits mast cell degranulation. LCE inhibits the phosphorylation of protein kinase C – JNK, ERK 1/2, and the expression of iNOS and COX-2 proteins. LCE dose-dependently inhibits IL-12p40 production and decreases binding to NF-κB.</td>
<td>Allergic airway inflammation LPS-induced RAW 264.7 cell LPS-induced macrophage cells In rat liver microsomes In rat liver microsomes LPS-induced RAW 264.7 cell LPS-induced inflammatory response LPS-induced inflammatory response LPS-induced inflammatory response TPA-induced mouse ear edema</td>
<td>[46] [47] [48] [49]</td>
</tr>
</tbody>
</table>

Yang R et al. The Pharmacological Activities... Planta Med 2015; 81: 1654–1669
the production of IL-12 p40 and IL-12 p70 proteins [59,70,75,76]. GA significantly suppresses the expression of cell surface molecules CD80 and CD86, and MHC classes I and as well as the levels of IL-12 production [9]. It also increases CD19 (+) B cells in the lamina propria and B220 (+) B cell aggregates [74]. Glycyrol inhibits calcineurin activity, suppresses IL-2 production, and regulates T lymphocytes [71]. LTG promotes γδ T cells proliferation, IFN-γ, and TNF-α secretion. It significantly improves the cytokotoxicity of γδ T cells to HepG2 cells. GP reduces the proportion of Treg cells, decreases lymph node Foxp3 and IL-10 mRNA expression, and upregulates the Th1/Th2 cytokine ratio in serum. It partially inhibits tumor growth [78].

Table 3 The antiviral compounds isolated from licorice and their possible mechanisms for viral prevention.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for viral prevention</th>
<th>Virus types</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>GC affects the release of infectious HCV particles, inhibits HCV full-length viral particles and HCV core gene expression. GC reduces adhesion force and stress between cerebral capillary vessel endothelial and PMN. GC activates T lymphocyte proliferation. GC weakens chemokine ligand 10, IL-6, and CCL5 production and suppresses H5N1-induced apoptosis. GC induces the production of β-chemokines. GC deregulates the multistratonic latency transcript. GC exerts an effect on the innate immunity to fight against a pathogenic virus. GC reduces HMG1 binding to DNA and inhibits influenza virus polymerase activity. GC reduces endocytic activity and reduces virus uptake. GC inhibits cell infection by PV.</td>
<td>HCV</td>
<td>[57]</td>
</tr>
<tr>
<td>18β-GA</td>
<td>18β-GA reduces the levels of viral proteins VP2, VP6, and NSP2. 18β-GA effectively inhibits HIV-1 and the accumulation of virus antigen p24 and protects cells from the cytopathogenic action of the virus.</td>
<td>Rotavirus</td>
<td>[66]</td>
</tr>
</tbody>
</table>

Table 4 The compounds with an immunoregulatory activity isolated from licorice and their possible mechanisms for immunoregulatory activity.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for immunoregulatory activity</th>
<th>Therapeutic effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>GC inhibits OVA-induced increases in airway resistance and eosinophil count, recovers the level of IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid, and increases the IFN-γ level in bronchoalveolar lavage fluid. GC demonstrates a pronounced lymphocytic proliferation response. GC causes increased production of IL-10. GC shows a dose-dependent priming effect on LPS-induced IL-12 p40 and IL-12 p70 (heterodimer of p40 and p35) protein production by peritoneal macrophages.</td>
<td>It effectively ameliorates the progression of asthma</td>
<td>[70]</td>
</tr>
<tr>
<td>18β-GA</td>
<td>18β-GA significantly suppresses the expression of cell surface molecules CD80, CD86, MHC class I, and MHC class II and the levels of IL-10 production. 18β-GA increases CD19(+) B cells in the lamina propria and B220(+) B cell aggregates framed by CD11c(+) dendritic cells in structures resembling isolated lymphoid follicles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycyrol</td>
<td>Glycyrol inhibits calcineurin activity, suppresses IL-2 production, and regulates T lymphocytes.</td>
<td>It can be developed as a novel drug</td>
<td>[71]</td>
</tr>
<tr>
<td>LTG</td>
<td>LTG produces IFNα and IL-2 when dominantly compared to IL-4 and IL-10 by the CD4+ Th1 immune response.</td>
<td>It inhibits disseminated candidiasis</td>
<td>[72]</td>
</tr>
<tr>
<td>LCA</td>
<td>LCA inhibits H2O2, NO, IFN-γ, TNF-α, and IL-17 production in splenocytes and peritoneal cells, and modulates the immune response in both Th1 and Th17 cells.</td>
<td>It reduces severity of experimental autoimmune encephalomyelitis in mice</td>
<td>[73]</td>
</tr>
<tr>
<td>GP</td>
<td>GP promotes γδ T cells proliferation, IFN-γ, and TNF-α secretion. GP enhances the expression of the cell surface molecules CD80, CD86, and MHC I-A/I-E, increases the production of IL-12 p70, and enhances both the proliferation and IFN-γ secretion of allogenic CD3+ T cells. GP reduces the proportion of Treg cells, decreases lymph node Foxp3 and IL-10 mRNA expression, and upregulates the Th1/Th2 cytokine ratio in serum.</td>
<td>It can be developed as a novel drug</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yang R et al. The Pharmacological Activities... Planta Med 2015; 81: 1654–1669
well as the expression of cell surface molecules and immune responses.

According to many in vivo and clinical studies, these compounds protected mice against disseminated candidiasis [72], reduced the severity of experimental autoimmune encephalomyelitis in mice [73], increased the end point serum antibody titers [74], increased the production of IL-10 in mice with Con A-induced hepatitis [75], and acted as an immune stimulant against DHV [59]. All these reports affirm the immunoregulatory activity of licorice and indicate that it can be developed as a novel immunomodulatory drug.

Antimicrobial activity

Increasing antibiotic resistance has resulted in an urgent need for alternative therapies to treat diseases. In recent years, many clinical and pharmacological researches have demonstrated the antimicrobial activities of licorice aqueous extract [79,80], ethanol extract [79,81], and supercritical fluid extract [82]. Many reports have shown that licorice has potent effects in inhibiting the activities of gram-positive and gram-negative bacteria such as *Staphylococcus aureus* [83–85], *Porphyromonas gingivalis* [86], *Streptococcus mutans* [87,88], *Candida albicans* [89,90], *Escherichia coli* [91], *Enterococcus faecalis* [92], *Pseudomonas aeruginosa* [93], *Helicobacter pylori* [94], and *Bacillus subtilis* [89]. It also has effects in inhibiting the activities of pathogenic fungi such as *Alternaria solani*, *Botrytis cinerea*, and *Phytophthora* [95].

Several compounds isolated from licorice, such as 18β-GA, LTG, GLD, LCA, LCE, LIA, LID, and glycyrrhizol A, have been reported to possess antimicrobial effects against *S. aureus*, *C. albicans*, *Micrococcus bovis*, yeast, and several cariogenic bacteria like *S. mutans* and *Streptococcus sobrinus*. The antimicrobial compounds, the possible mechanisms for the antimicrobial effects, and the microorganism types are listed in detail in Table 5.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for antimicrobial activity</th>
<th>Microorganism types</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLD</td>
<td>Not mentioned.</td>
<td>Yeast and filamentous fungi</td>
<td>[90]</td>
</tr>
<tr>
<td></td>
<td>GLD prevents the yeast-hyphal transition.</td>
<td>C. albicans</td>
<td>[96]</td>
</tr>
<tr>
<td>LCE</td>
<td>LCE reduces the production of α-toxin.</td>
<td>S. aureus</td>
<td>[97]</td>
</tr>
<tr>
<td>LCA</td>
<td>LCA inhibits the biofilm formation and prevents the yeast-hyphal transition.</td>
<td>C. albicans</td>
<td>[96]</td>
</tr>
<tr>
<td>LTG</td>
<td>LTG decreases the production of α-hemolysin.</td>
<td>S. aureus</td>
<td>[98]</td>
</tr>
<tr>
<td>18β-GA</td>
<td>18β-GA reduces the expression of key virulence genes, including soeR and hox.</td>
<td>S. aureus</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>18β-GA exerts Th1-immunological adjuvant activity.</td>
<td>C. albicans</td>
<td>[99]</td>
</tr>
<tr>
<td></td>
<td>Not mentioned.</td>
<td>M. bovis</td>
<td>[100]</td>
</tr>
<tr>
<td>LIA</td>
<td>Not mentioned.</td>
<td>S. mutans, S. sobrinus, P. gingivalis and Prevotella intermedia</td>
<td>[101]</td>
</tr>
<tr>
<td>LID</td>
<td>Not mentioned.</td>
<td>S. mutans, S. sobrinus, P. gingivalis, P. intermedia and Fusobacterium nucleatum</td>
<td>[101]</td>
</tr>
<tr>
<td>Glycyrrhizol A</td>
<td>Not mentioned.</td>
<td>Cariogenic bacteria like S. mutans</td>
<td>[102]</td>
</tr>
</tbody>
</table>

Inhibitory effect on diabetes

Licorice has been shown to inhibit a series of pathological and physiological changes induced by D-galactose, such as insulin resistance and oxidative stress/free radical damage, so as to delay the development of diabetes. Several compounds isolated from licorice, such as GL, GA, LTG, ISL, GLD, LCA, LCE, and some other flavonoids, have been reported to possess an inhibitory effect in diabetes. The antidiabetic compounds, the possible mechanisms for an inhibitory effect in diabetes, and correlated references are listed in Table 6.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Microorganism types</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLD, GA, LTG, GL, GA, LTA, LIA, LID, and glycyrrhizol A</td>
<td>Yeast and filamentous fungi</td>
<td>[90]</td>
</tr>
<tr>
<td>GL, GA, LTG, GLD, LCA, LCE, and some other flavonoids</td>
<td>Yeast and filamentous fungi</td>
<td>[90]</td>
</tr>
</tbody>
</table>

GC and GA show multiple biological activities on glucose absorption, glucose uptake, insulin secretion, diabetic vascular dysfunction, retinopathy, and nephropathy [104]. GC also inhibits the RAGE/NF-κB pathway [103], reduces diabetes-induced abnormalities of pancreas and kidney tissues, counteracts free iron, iron-mediated free radical reactions and carbonyl formations in hemoglobin, and normalizes oxidative stress parameters [105]. Many flavonoids isolated from licorice exhibit a significant blood glucose lowering effect with different mechanisms. LCA selectively inhibits JNK1 activity, resulting in G1 phase arrest and apoptosis [106]. LCE increases the levels of PPARγ expression, enhances adipocyte differentiation, and increases the population of small adipocytes [107]. Glabrol shows a noncompetitive type of inhibition against diacylglycerol acyltransferase [111]. GLD inhibits body weight and glucose tolerance, and decreases fasting blood glucose levels and MDA content in the liver, kidney, and pancreas. It also strengthens the antioxidant defense mechanism by increasing PON2 activity, upregulates the mRNA expression of PON2 and the expression of manganese superoxide dismutase and catalase in monocytes [112,113]. Glycybenzofuran and several other flavonoids selectively inhibit the activity of PTP1B in different models and with different selectivities in the insulin-

Table 6 The antidiabetic compounds isolated from licorice and their possible mechanisms for inhibitory effect of diabetes.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for inhibitory effect of diabetes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>GC inhibits the RAGE/NF-κB pathway by increasing SOD activity, decreasing the peroxide degradation product malondialdehyde level, and decreasing proinflammatory cytokine TGF-β1 expression.</td>
<td>[103]</td>
</tr>
<tr>
<td></td>
<td>GC shows multiple biological activities on glucose absorption, glucose uptake, insulin secretion, diabetic vascular dysfunction, retinopathy, and nephropathy.</td>
<td>[104]</td>
</tr>
<tr>
<td></td>
<td>GC decreases the serum insulin level, and increases the levels of glycohemoglobin, cholesterol, and triglycerides. It also reduces diabetes-induced abnormalities of pancreas and kidney tissues, counteracts free iron, iron-mediated free radical reactions and carbonyl formation in hemoglobin. Oxidative stress parameters are reverted to normal values after GC administration.</td>
<td>[105]</td>
</tr>
<tr>
<td>GA</td>
<td>GA shows multiple biological activities on glucose absorption, insulin secretion, diabetic vascular dysfunction, retinopathy, and nephropathy.</td>
<td>[104]</td>
</tr>
<tr>
<td>LCA</td>
<td>LCA selectively inhibits JNK1 activity, which results in G1 phase arrest and apoptosis.</td>
<td>[106]</td>
</tr>
<tr>
<td>LCE</td>
<td>LCE increases the levels of PPARγ expression, enhances adipocyte differentiation, and increases the population of small adipocytes.</td>
<td>[107]</td>
</tr>
<tr>
<td>ISL</td>
<td>ISL exhibits a significant blood glucose lowering effect. The presence of ether and ester groups in ISL is important for this effect.</td>
<td>[108]</td>
</tr>
<tr>
<td>LTG</td>
<td>LTG exhibits a significant blood glucose lowering effect. The presence of ether and ester groups in LTG is important for this effect.</td>
<td>[108]</td>
</tr>
<tr>
<td>Licoagroside, licoagroaurone, isobavachalcone</td>
<td>These compounds inhibit the activity of PTP1B in different modes and with different selectivities in the insulin-signaling pathway.</td>
<td>[109]</td>
</tr>
<tr>
<td>Glycybenzofuran</td>
<td>It selectively inhibits the activity of PTP1B and promotes insulin-stimulated Akt phosphorylation level in human hepatocellular liver carcinoma (HepG2) cells.</td>
<td>[109]</td>
</tr>
<tr>
<td>Semilicoisoflavone B</td>
<td>It inhibits sorbitol formation of the rat lens incubated with a high concentration of glucose.</td>
<td>[110]</td>
</tr>
<tr>
<td>Glabrol</td>
<td>It shows a noncompetitive type of inhibition against diacylglycerol acyltransferase.</td>
<td>[111]</td>
</tr>
<tr>
<td>GLD</td>
<td>GLD significantly increases body weight, glucose tolerance and SOD activities, while it decreases fasting blood glucose levels and MDA content in the liver, kidneys, and pancreas.</td>
<td>[112]</td>
</tr>
<tr>
<td></td>
<td>GLD has the potential of strengthening the antioxidant defense mechanism by increasing PON2 activity, upregulating mRNA expression of PON2, and upregulating the expression of manganese SOD and catalase in monocytes.</td>
<td>[113]</td>
</tr>
</tbody>
</table>

signaling pathway [109]. Above all, after licorice administration, oxidative stress parameters are reverted to normal values, diabetes-induced abnormalities of liver, kidney, and pancreas are improved, and glucose absorption and insulin secretion are controlled and regulated.

Some researches also demonstrated that licorice extract would be a highly potent therapeutic agent for the prevention and treatment of diabetes nephropathy led by mesangial fibrosis and glomerulosclerosis through blocking Akt activation and TGF-β1 signaling [114]. It alleviated blood glucose levels, restored renal function, attenuated body weight loss, and modulated the adverse effect of diabetes on renal glutathione and malondialdehyde as well as the activity of catalase and superoxide dismutase. It also restored the total antioxidant capacity of diabetic rat kidneys. Above all, licorice extract has a potential therapeutic effect for diabetes due to its antioxidant and antihyperglycemic properties [115,116]. All these reports indicated that licorice was a highly potent therapeutic agent for diabetes treatment.

Hepatoprotective effect

To date, only three compounds, GA, GC, and DGC, have been reported to possess hepatoprotective activity, especially GC, which has been shown to be effective in almost all the process of liver diseases. Since a GC preparation was used for the clinical treatment of liver disease by Yamamoto saso in 1958, it has been widely used in the treatment of a variety of liver diseases, such as hepatitis B, hepatitis C, liver fibrosis, and cirrhosis of the liver. Different in vivo animal models have shown that GC has an obvious protective effect in liver injury induced by CCl4 [117,118], and hepatotoxicity induced by xanthium [119], α-naphthylisothiocyanates [120], and liver fibrosis [121]. The hepatoprotective compounds, the mechanisms for the hepatoprotective effect, and correlated references are listed in Table 7. Oxidative stress, lipid peroxidation, and transaminase reactions are some of the mechanisms that can lead to liver dysfunction. Recent reports have found that the downregulation of these factors may explain the hepatoprotective effect of licorice. GA has been reported to exert a hepatoprotective effect by restoring the expression of proliferating cell nuclear antigen, COX 2, inducible nitric oxide synthase, and NF-xB [127,129], stabilizing lysosomal membranes, inhibiting cathepsin B expression and enzyme activity, inhibiting mitochondrial cytochrome c release, and reducing free fatty acid-induced oxidative stress [128]. GC exerts the hepatoprotective effect by inhibiting the lytic pathway in which the membrane attack complex is formed [126], reducing the Bax/Bcl-2 ratio and the expression of cleaved caspase-3 and cleaved caspase-9, inhibiting cytochrome c and Smac release from the mitochondria to cytoplasm [125], increasing CYP3A4 mRNA and protein levels through the activation of the PXR, inhibiting the expression of CYP7A1 through an increase in small heterodimer partner expression [122], inhibiting mitochondrial membrane depolarization [124], and downregulating both the mRNA and protein of MMP-9 [119]. DGC possesses hepatoprotective effects through the suppression of CYP2E1 expression [130]. In summary, licorice exerts its hepatoprotective effect by regulating the expression of CYP enzymes, attenuating oxidative stress, improving the stability of the cell structure and biological membrane systems, and inhibiting the cytolytic activity of the complement and apoptosis systems.
In addition, licorice extract significantly inhibits the aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities, and decreases total protein, albumin, and globulin levels. It also enhances liver SOD, catalase, GSH peroxidase, glutathione reductase, and glutathione S-transferase activities as well as the GSH level [117, 118, 123, 131]. All these reports indicate that licorice is a highly potent therapeutic agent for the treatment of liver diseases.

Adrenal cortical hormone like function

Some reports demonstrated that licorice extracts and compounds had adrenal cortical hormone like function, increased adrenocorticotropic hormone formation, stimulated steroidogenesis directly in mice adrenal glands, and also stimulated the secretion of glucocorticoids, mineralocorticoids, and anterior pituitary corticotroph-releasing hormone and vasopressin from the adrenal cortex [132, 133]. Among the compounds isolated from licorice, 18β-GA, GC, and ISL exert the adrenal cortical hormone like function. ISL has significant estrogenic activities due to its estrogen responsive β selectivity, partial estrogen agonist activity, and the nonenzymatic transformation between ISL and LTG [134]. 18β-GA and GC play a very important role in the treatment of glucocorticoid-dependent diseases as a well-known inhibitor of 11β-hydroxysteroid dehydrogenases [133, 135, 136]. GA shows its mineralocorticoid actions by inhibiting the conjugation of deoxycorticosterone and dehydroepiandrosterone at a source within the adrenal cortex [137]. The above findings lend support to the reasonable use of licorice as a promising strategy for the treatment of hormone-dependent diseases.

Enhancing memory and nerve protective effect

The beneficial effects of licorice aqueous extract on learning and memory have been investigated by different researchers. Chakravarthi and Avadhani [138] investigated the function of licorice aqueous extract on the dendritic morphology of hippocampal cornu ammonis area three (CA3) neurons and found it, in the doses of 150 and 225 mg/kg, showed an obvious enhancement of dendritic arborization and dendritic intersections in hippocampal pyramidal neurons, which demonstrated its neuronal dendritic growth stimulating properties. He also found that all of the doses of licorice aqueous extracts significantly enhanced the memory, and in the doses of 150 and 225 mg/kg, it significantly enhanced both learning and memory [139]. Michel et al. [140] believed that the nootropic and antiangiotic effects of licorice extracts were mediated through augmenting monoaminergic transmission in the cortex, hippocampus, and striatum. Among all of the kinds of compounds isolated from licorice, GLD and TDC are responsible for improving learning and memory and are commonly used in the treatment of cardiovascular and central nervous system diseases, especially the former. The higher doses of GLD significantly antagonize amnesic induced by scopolamine [141]. GLD also prevents the deleterious effects of diabetes on memory and learning in rats [142]. Inhibition of BACE1 is regarded as an effective strategy for anti-Alzheimer's disease drug discovery. While the research of Zhu et al. demonstrated that TDC was a new BACE1 inhibitor to ameliorate memory impairment in mice [143]. All of the above demonstrate that licorice appears to be a promising drug for improving memory, impaired learning, Alzheimer's disease, dementia, and other neurodegenerative disorders [141, 144].

Other activities

In addition to the above nine activities, GLD and glabrene have an estrogen-like effect that stimulates the synthesis of epithelial cell DNA and prevents postmenopausal women from vascular injury and atherosclerosis [145]. GA is effective in suppressing pain-related behaviors caused by sciatic nerve injury [146]. ISL has a spasmolytic effect on uterine contraction, an effective function in reducing pain [147], and an antiangiogenic property [148]. The traditional compound prescription “gancao wheat jujube soup” demonstrated a potential antidepressant-like effect of liquiritin treatment in chonic, variable, stress-induced depression in a rat model, which might be related to the defense of liquiritin against oxidative stress [149]. Licorice is also used to relieve menopausal symptoms in postmenopausal women [150].

Table 7 Compounds with a hepatoprotective activity isolated from licorice and their possible mechanisms for hepatoprotective activity.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>The possible mechanisms for hepatoprotective activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>GC regulates the expression of CYP3A and CYP7A to prevent the toxic accumulation of bile acids, and protects the liver from the harmful effects of lithocholic acid.</td>
<td>[122]</td>
</tr>
<tr>
<td></td>
<td>GC significantly reduces alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, and thiobarbituric acid reactive substance levels, and increases GSH, SOD, and catalase levels.</td>
<td>[123]</td>
</tr>
<tr>
<td></td>
<td>GC protects hepatocytes against tert-butyl hydroperoxide-induced oxidative injury, and against cell death by preventing intracellular reduced GSH depletion, a decrease in ROS formation, and the inhibition of mitochondrial membrane depolarization.</td>
<td>[124]</td>
</tr>
<tr>
<td></td>
<td>GC reduces the Bax/Bcl-2 ratio, the expression of cleaved caspase-3, cleaved caspase-9, and inhibits cytochrome c and Smac release from the mitochondria to cytoplasm. It reduces the expression level of Smac, which inhibits c-IAP1 activity, ultimately inhibiting the activity of caspase-3. It inhibits CCl4-induced hepatocyte apoptosis through a p53-dependent mitochondrial pathway to reduce the ratio of the hepatic fibrotic region.</td>
<td>[125]</td>
</tr>
<tr>
<td></td>
<td>GC inhibits the lytic pathway in which the membrane attack complex is formed.</td>
<td>[126]</td>
</tr>
<tr>
<td></td>
<td>GC leads to a downregulation of both the mRNA and protein of MMP-9.</td>
<td>[119]</td>
</tr>
<tr>
<td>GA</td>
<td>GA protects hepatocytes against TNF-α-induced chronic liver inflammation by attenuating NF-κB activation.</td>
<td>[127]</td>
</tr>
<tr>
<td></td>
<td>GA stabilizes lysosomal membranes, inhibits cathepsin B expression and enzyme activity, inhibits mitochondrial cytochrome c release, and reduces free fatty acid-induced oxidative stress.</td>
<td>[128]</td>
</tr>
<tr>
<td></td>
<td>GA restores the expressions of proliferating cell nuclear antigen, COX 2, iNOS, and NF-κB.</td>
<td>[129]</td>
</tr>
<tr>
<td>DGC</td>
<td>DGC possesses hepatoprotective effects against centrilobular injury caused by CCl4 injection through suppression of CYP2E1 expression.</td>
<td>[130]</td>
</tr>
</tbody>
</table>
Licorice Applications in Traditional Chinese Medicine Therapeutics

Licorice is officially listed in the Chinese Pharmacopeia. In traditional applications, it is used for the treatment of gastro and respiratory diseases, and is also used to alleviate the toxicity of other drugs. Licorice is honored as the “excellent coordinator” in traditional Chinese medicine since it can harmonize the activities of all of the other ingredients and promote their rapid absorption into the bloodstream, organs, and target cells. In Shang han zha bing lun, one of the most authoritative medical formularies in ancient China, which contains 112 traditional prescriptions, licorice shows up 70 times. Monshood [roots of Aconitum carmichaelii Debx. (Ranunculaceae), Fu zi in Chinese], pinelliae [tubers of Pinellia ternata (Thunb.) Breit. (Araceae), Ban xia in Chinese], and cinnabaris (mercuric sulphide, Zhu sha in Chinese) are the top three toxics that are most frequently combined with licorice. Ginseng [roots of Panax ginseng C.A. Mey. (Araliaceae), Ren shen in Chinese], Poria [sclerotium of Poria cocos (Schw.) Wolf. (Polyporaceae), Fu ling in Chinese], and Chinese angelica [roots of Angelica sinensis (Oliv.) Diels. (Alpiaceae), Dang gui in Chinese] are the top three nontoxic herbs that are most frequently combined with licorice. Licorice is seldom used with seaweed [Sargassum pallidum (Turn.) C. Ag. or Sargassum justiforme (Harv.) Setch. (Sargassaceae), Hai Zao in Chinese], Euphorbia pekinensis [the ground part of Cirsiun japonicum (Thunb.) Fisch. ex DC (Asteraceae), Da ji in Chinese], Euphorbia kansui [root of Euphorbia kansui T.N. Liou ex T. P. Wang. (Euphorbiaceae), Gan sui in Chinese], and Daphne genkwa [flower of Daphne genkwa Sieb. et Zucc. (Thymelaeaceae), Yuan Hua in Chinese] in traditional clinic application [151]. It has been applied to nourishing qi, alleviating pain, tonifying the spleen and stomach, eliminating phlegm, and relieving coughing.

Clinical Therapeutics

With the development of modern pharmacology and clinical trials, there are many reports about the clinical applications of licorice ingredients and preparations. Among all of the active compounds isolated from licorice, the development of GC preparations, which are mostly used to treat liver diseases, has a long history in Asia [5]. GC preparation has developed four generations so far, from GC tablets to ammonium glycyrrhizinate, diammonium glycyrrhizinate, and magnesium isoglycyrrhizinate. Compared with the first three GC preparations, magnesium isoglycyrrhizinate has a better lipotropy, higher targeting, and fewer adverse reactions. It has been used in protecting hepatic L02 cells from ischemia/reperfusion-induced injury [152], slowing down the process of pulmonary fibrosis [153], inhibiting ethanol-induced testicular injury [154], and restoring hepatic impairments caused by paclitaxel in other cancer treatments [155]. Furthermore, licorice and its active compounds have been applied to Addison’s disease [6], allergic rhinitis [156], postoperative sore throat [157], and sarcopodonta [79]. The addition of licorice to oral cortisone increased the amount of cortisol available to tissues in Addison’s disease [6]. A double-blind clinical trial study conducted on patients with allergic rhinitis showed that the rate of allergic rhinitis symptoms including severe rhinorrhea, sneeze, pruritus, and congestion were lowered significantly after using GC nasal drops [156]. Agarwal et al. [157] found that licorice gargle was effective in attenuating the incidence and severity of postoperative sore throat. Jain et al. [79] found that both aqueous and ethanolic licorice extracts exerted cariostatic activities through a clinical trial carried out among 60 pediatric patients aged 7–14 years.

With the discovery of more and more pharmacology activities, licorice has shown a great potential for acting as a novel drug or complement agent to treat different diseases.

Toxicity Studies

It has been reported that large doses or long-term injections of licorice sometimes produce an acquired form of apparent mineralocorticoid excess syndrome, expressed as sodium retention, hypokalemia, and high blood pressure [158, 159].

According to a recent report, the medical records of patients treated with herbal complexes containing licorice from January 1, 2010 to December 31, 2010 were examined. The changes in the levels of creatinine, potassium, and blood urea nitrogen before and after herbal complex intake were recorded, and the prevalence of hypokalemia among these patients were investigated. Three hundred and sixty patients did not show significant changes in the levels of potassium and creatinine (p = 0.815 and 0.289, respectively) and hypokalemia was observed in six patients. However, in five patients, the hypokalemia did not appear to be related to the licorice. This investigation suggested that herbal complexes containing licorice did not significantly influence the potassium levels in routine clinical herbal therapies [160]. In another study, 4T1 mammary carcinoma cells were injected into the mammary fat pads of syngeneal BALB/c mice. Seven days after the injection, the mice received LCE (7 or 14 mg/kg body weight/day) via oral gavage for 25 days. LCE suppressed solid tumor growth and lung metastasis, but did not exhibit kidney or liver toxicity [17]. Russo et al. [161] proposed that some people could be susceptible to low doses of GC because of an 11β-hydroxysteroid dehydrogenase deficiency. Harahap et al. [162] believed that licorice ingestion, as well as mutations in the HSD11B2 gene, inhibited 11β-hydroxysteroid dehydrogenase type 2 enzyme activity and caused the syndrome of apparent mineral cortical excess, which supposed that licorice ingestion was an environmental risk factor for hypertension or an apparent mineral cortical excess state in patients with a mutation in HSD11B2.

Future Directions of Research

In recent years, the triterpene compounds of licorice, such as GC and GA, have been studied most frequently and deeply for their various activities, such as anti-inflammatory, antitumor, antiviral, antidiabetic, immune-stimulating, and hepatoprotective activities. The antiviral effects of GC and GA cannot be replaced by other compounds in licorice. Flavonoids, especially chalcones, play an important role in the treatment of cancer, inflammation, diabetes, and diseases caused by bacteria. Licorice polysaccharides have an effective and important function on enhancing immunity, which is worth studying more deeply.

In the Chinese Pharmacopoeia, GC is stipulated to be one of the marker compounds to evaluate the quality of licorice. Since many other compounds have been found to have excellent pharmacological activities so far, we propose that the quality evaluation method be updated to meet the need of clinical therapy. In addi-
tion, the active ingredients and their proportion vary a lot in the three official species (G. uralensis, G. inflata, and G. glabra) [163], but the research about the differences in their clinical applications is infrequent. Furthermore, different medicinal parts of licorice, main roots, adventitious roots, and lateral roots, contain different levels of active ingredients, which might lead to the differences in pharmacological activities. Plus, functional genes can influence the biosynthesis of metabolites, and finally cause the differences in a pesticide effect, which is also worth studying.

It has been reported that licorice extract inhibited NO production and iNOS expression in LPS-stimulated RAW264 murine macrophage cells, while treatment of GC alone could not show this activity. Interestingly, the inhibitory effect of the GC knockout extract was significantly attenuated compared with the extract. Furthermore, the combined treatment with GC knockout extract and GC could improve the attenuated inhibition [164]. It appears that some biological activities may be due to the combined effects of several licorice constituents rather than a specific active ingredient. The synergistic activity can also be a future research direction.

Recently, the clinical safety of licorice has been evaluated. There is apparently a great individual variation in the susceptibility to effects of several licorice constituents rather than a specific active ingredient. The synergistic activity can also be a future research direction. The safety of licorice should be evaluated to provide the possible adverse effects of licorice. Multidose pharmacokinetics should be characterized more fully.

Acknowledgements

This work was supported by the Beijing Project for Young Talents (YETP0819) and National Science Foundation of China (81503181).

Conflict of Interest

All authors declare that they have no competing interests.

References

3 Xie JB. Researches on the therapeutic basis and system of evaluation target of genuineness of liquorice [dissertation]. Beijing: Beijing University of Chinese Medicine; 2009: 11–12
8 Khan R, Khan AQ, Lateef A, Rehman MU, Tahir M, Ali F, Hamida OO, Sultan S. Glycyrrhizin acid suppresses the development of precancerous lesions via regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. PloS One 2013; 8: e56520

Smitrov VN, Zarubova VI, Animov PM, Shiro AA. [Effect of a combination of glutamyl-troprostan and glycyrrhizic acid on the course of acute infection caused by influenza (H3N2) virus in mice]. Vopr Virusol 2012; 57: 23–27

Sun X, Yen J, Ren X. Antiviral effect of diaminomycin glycyrrizinate and lithium chloride on cell infection by pseudorabies virus. Antiviral Res 2010; 85: 346–353

Yang R et al. The Pharmacological Activities... Planta Med 2015; 81: 1654–1669

Planta Med 2015; 81: 1654–1669

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

78 He X, Li X, Liu B, Xu L, Zhao H, Lu A. Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhiza in H22 hepatocarcinoma bearing mice. Molecules 2011; 16: 8343–8352

80 Al-Turki AI, El-Ziney MG, Abdel-Salam AM. Chemical and anti-bacterial characterization of aqueous extracts of oregano, marjoram, sage and licorice and their application in milk and labneh. JFAE 2008; 6: 39

82 Bodet C, La VF, Gafner S, Bergeron C, Pascual DW, Hardy ME. A laboratory evaluation of the antibacterial activity of Th1 against Candida albicans surface mannan extract. Pharm Bio 2013; 20: 951–955

fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology 2008; 47: 1905–1915

108 Gaur R, Yadav KS, Verma RK, Yadav NP, Bhakuni RS. In vivo anti-diabet-
ic activity of derivatives of isoliquiritigenin and liquiritigenin. Phyto-
medicine 2014; 21: 415–422

109 Li W, Li S, Higaki K, Sasaki T, Asada Y, Ohshima S, Koike K. Evaluation of licorice flavonoids as protein tyrosine phosphatase 1B inhibitors. Bio-

110 Lee YS, Kim SH, Jung SH, Kim JK, Pan CH, Lim SS. Aldose reductase in-
hibitory compounds from Glycyrrhiza uralensis. Biol Pharm Bull 2010;

33: 917–921

111 Choi JH, Choi JN, Lee SY, Lee SJ, Kim K, Kim YK. Inhibitory activity of di-
acylglycerol acyltransferase by glabrol isolated from the roots of lico-

rice. Arch Pharm Res 2010; 33: 237–242

112 Wu F, Jin Z, Jin J. Hypoglycemic effects of glabridin, a polyphenolic fla-

113 Yehuda I, Madar Z, Schuman-Sapir A, Tamir S. Protective effects of

berg TE, Rajantie E. Maternal prenatal licorice consumption alters hypo-

120 Michel HE, Tadros MG, Abdel-Naim AB, Khalifa AE. Effect of licorice

124 Ju YX, Lin SG, Zhou ZW, Chen X, Liang J, Yu XQ, Chowbay B, Wen JY, Duan W, Chen E, Li XT, Cao J, Li CC, Xue CC, Zhou SF. Role of P-glycopro-

tein in limiting the brain penetration of glabridin, an active isoflavon from the root of Glycyrrhiza glabra. Pharm Res 2007; 24: 1668–1690

125 Kwon HS, Oh SM, Kim JK. Glabridin, a functional compound of liqui-

126 Akasaka Y, Sakai A, Takasuka K, Tsukahara M, Hatta A, Suzuki H, Inoue H. Suppressive effects of glycyrrhetinic acid derivatives on tachykinin recep-

188

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

Yang R et al. The Pharmacological Activities... Planta Med 2015; 81: 1654–1669