J Pediatr Genet 2016; 05(01): 025-032
DOI: 10.1055/s-0035-1557110
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Genetics of Urinary Tract Infections and the Innate Defense of the Kidney and Urinary tract

Ines Ambite*
1   Section of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
,
Gustav Rydstrom*
1   Section of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
,
Andrew L. Schwaderer
2   Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States
,
David S. Hains
3   Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee, United States
4   Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
› Author Affiliations
Further Information

Publication History

12 July 2014

02 April 2015

Publication Date:
13 August 2015 (online)

Abstract

The urinary tract is a sterile organ system. Urinary tract infections (UTIs) are common and often serious infections. Research has focused on uropathogen, environment, and host factors leading to UTI pathogenesis. A growing body of evidence exists implicating genetic factors that can contribute to UTI risks. In this review, we highlight genetic variations in aspects of the innate immune system critical to the host response to uropathogens. This overview includes genetic variations in pattern recognition receptor molecules, chemokines/cytokines, and neutrophil activation. We also comprehensively cover murine knockout models of UTI, genetic variations involved in renal scarring as a result of ascending UTIs, and asymptomatic bacteriuria.

* Dr. Ambite and Dr. Rydstrom contributed equally to this work.


 
  • References

  • 1 Scholes D, Hooton TM, Roberts PL, Stapleton AE, Gupta K, Stamm WE. Risk factors for recurrent urinary tract infection in young women. J Infect Dis 2000; 182 (4) 1177-1182
  • 2 Skandarajah A, Spencer JD, Cohen DM, Kline J, Hains DS, Schwaderer AL. Urinary tract infections, familial occurrence and association with other infections. J Clin Pediatr Nephrol 2014; 2 (1) 49-52
  • 3 Stauffer CM, van der Weg B, Donadini R, Ramelli GP, Marchand S, Bianchetti MG. Family history and behavioral abnormalities in girls with recurrent urinary tract infections: a controlled study. J Urol 2004; 171 (4) 1663-1665
  • 4 Scholes D, Hawn TR, Roberts PL , et al. Family history and risk of recurrent cystitis and pyelonephritis in women. J Urol 2010; 184 (2) 564-569
  • 5 Lundstedt AC, Leijonhufvud I, Ragnarsdottir B, Karpman D, Andersson B, Svanborg C. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J Infect Dis 2007; 195 (8) 1227-1234
  • 6 Sobel JD. Pathogenesis of urinary tract infection. Role of host defenses. Infect Dis Clin North Am 1997; 11 (3) 531-549
  • 7 Asscher AW, Sussman M, Waters WE, Davis RH, Chick S. Urine as a medium for bacterial growth. Lancet 1966; 2 (7472) 1037-1041
  • 8 Leffler H, Svanborg-Edén C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 1981; 34 (3) 920-929
  • 9 Svenson SB, Hultberg H, Källenius G, Korhonen TK, Möllby R, Winberg J. P-fimbriae of pyelonephritogenic Escherichia coli: identification and chemical characterization of receptors. Infection 1983; 11 (1) 61-67
  • 10 Lomberg H, Hellström M, Jodal U, Svanborg-Edén C. Renal scarring and non-attaching Escherichia coli. Lancet 1986; 2 (8519) 1341
  • 11 Lomberg H, Hanson LA, Jacobsson B, Jodal U, Leffler H, Edén CS. Correlation of P blood group, vesicoureteral reflux, and bacterial attachment in patients with recurrent pyelonephritis. N Engl J Med 1983; 308 (20) 1189-1192
  • 12 Lomberg H, Jodal U, Eden CS, Leffler H, Samuelsson B. P1 blood group and urinary tract infection. Lancet 1981; 1 (8219) 551-552
  • 13 Stapleton A, Nudelman E, Clausen H, Hakomori S, Stamm WE. Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J Clin Invest 1992; 90 (3) 965-972
  • 14 Lindstedt R, Larson G, Falk P, Jodal U, Leffler H, Svanborg C. The receptor repertoire defines the host range for attaching Escherichia coli strains that recognize globo-A. Infect Immun 1991; 59 (3) 1086-1092
  • 15 Hodson CJ, Edwards D. Chronic pyelonephritis and vesico-ureteric reflex. Clin Radiol 1960; 11: 219-231
  • 16 Ransley PG, Risdon RA, Godley ML. High pressure sterile vesicoureteral reflux and renal scarring: an experimental study in the pig and minipig. Contrib Nephrol 1984; 39: 320-343
  • 17 Kass EJ, Kernen KM, Carey JM. Paediatric urinary tract infection and the necessity of complete urological imaging. BJU Int 2000; 86 (1) 94-96
  • 18 Stokland E, Hellström M, Jacobsson B, Jodal U, Sixt R. Renal damage one year after first urinary tract infection: role of dimercaptosuccinic acid scintigraphy. J Pediatr 1996; 129 (6) 815-820
  • 19 Stokland E, Hellström M, Jacobsson B, Jodal U, Sixt R. Evaluation of DMSA scintigraphy and urography in assessing both acute and permanent renal damage in children. Acta Radiol 1998; 39 (4) 447-452
  • 20 Craig JC, Irwig LM, Knight JF, Roy LP. Does treatment of vesicoureteric reflux in childhood prevent end-stage renal disease attributable to reflux nephropathy?. Pediatrics 2000; 105 (6) 1236-1241
  • 21 Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS. The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol 2014; 29 (7) 1139-1149
  • 22 Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med 2000; 192 (6) 881-890
  • 23 Hang L, Frendéus B, Godaly G, Svanborg C. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis 2000; 182 (6) 1738-1748
  • 24 Svensson M, Irjala H, Alm P, Holmqvist B, Lundstedt AC, Svanborg C. Natural history of renal scarring in susceptible mIL-8Rh-/- mice. Kidney Int 2005; 67 (1) 103-110
  • 25 Fischer H, Lutay N, Ragnarsdóttir B , et al. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog 2010; 6 (9) e1001109
  • 26 Fischer H, Yamamoto M, Akira S, Beutler B, Svanborg C. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol 2006; 36 (2) 267-277
  • 27 Frendéus B, Godaly G, Hang L, Karpman D, Svanborg C. Interleukin-8 receptor deficiency confers susceptibility to acute pyelonephritis. J Infect Dis 2001; 183 (Suppl. 01) S56-S60
  • 28 Boman HG. Antibacterial peptides: key components needed in immunity. Cell 1991; 65 (2) 205-207
  • 29 Zasloff M. The antibacterial shield of the human urinary tract. Kidney Int 2013; 83 (4) 548-550
  • 30 Chromek M, Slamová Z, Bergman P , et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 2006; 12 (6) 636-641
  • 31 Morrison G, Kilanowski F, Davidson D, Dorin J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 2002; 70 (6) 3053-3060
  • 32 Becknell B, Spencer JD, Carpenter AR , et al. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS ONE 2013; 8 (10) e77714
  • 33 Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 2001; 276 (13) 9924-9930
  • 34 Schmid M, Prajczer S, Gruber LN , et al. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell Physiol Biochem 2010; 26 (3) 311-318
  • 35 Bates JM, Raffi HM, Prasadan K , et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 2004; 65 (3) 791-797
  • 36 Dou W, Thompson-Jaeger S, Laulederkind SJ , et al. Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. Am J Physiol Renal Physiol 2005; 289 (1) F49-F60
  • 37 Lutay N, Ambite I, Grönberg Hernandez J , et al. Bacterial control of host gene expression through RNA polymerase II. J Clin Invest 2013; 123 (6) 2366-2379
  • 38 Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 2003; 301 (5629) 105-107
  • 39 Justice SS, Hung C, Theriot JA , et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 2004; 101 (5) 1333-1338
  • 40 Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 2007; 9 (9) 2230-2241
  • 41 Yadav M, Zhang J, Fischer H , et al. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog 2010; 6 (9) e1001120
  • 42 Arbour NC, Lorenz E, Schutte BC , et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25 (2) 187-191
  • 43 Karoly E, Fekete A, Banki NF , et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res 2007; 61 (3) 371-374
  • 44 Yin X, Hou T, Liu Y , et al. Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults. PLoS ONE 2010; 5 (12) e14223
  • 45 Hawn TR, Scholes D, Li SS , et al. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS ONE 2009; 4 (6) e5990
  • 46 Calvano JE, Bowers DJ, Coyle SM , et al. Response to systemic endotoxemia among humans bearing polymorphisms of the Toll-like receptor 4 (hTLR4). Clin Immunol 2006; 121 (2) 186-190
  • 47 Marsik C, Jilma B, Joukhadar C, Mannhalter C, Wagner O, Endler G. The Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms influence the late inflammatory response in human endotoxemia. Clin Chem 2005; 51 (11) 2178-2180
  • 48 Ferwerda B, McCall MB, Alonso S , et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A 2007; 104 (42) 16645-16650
  • 49 Ragnarsdóttir B, Samuelsson M, Gustafsson MC, Leijonhufvud I, Karpman D, Svanborg C. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 2007; 196 (3) 475-484
  • 50 Hawn TR, Scholes D, Wang H , et al. Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS ONE 2009; 4 (12) e8300
  • 51 Ragnarsdóttir B, Jönsson K, Urbano A , et al. Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS ONE 2010; 5 (5) e10734
  • 52 Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006; 6 (9) 644-658
  • 53 Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19: 623-655
  • 54 Agace WW, Hedges SR, Ceska M, Svanborg C. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J Clin Invest 1993; 92 (2) 780-785
  • 55 Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 2004; 189 (9) 1734-1742
  • 56 Lundstedt AC, McCarthy S, Gustafsson MC , et al. A genetic basis of susceptibility to acute pyelonephritis. PLoS ONE 2007; 2 (9) e825
  • 57 Smithson A, Sarrias MR, Barcelo J , et al. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol 2005; 12 (12) 1358-1363
  • 58 Artifoni L, Negrisolo S, Montini G , et al. Interleukin-8 and CXCR1 receptor functional polymorphisms and susceptibility to acute pyelonephritis. J Urol 2007; 177 (3) 1102-1106
  • 59 Cheng CH, Lee YS, Tsau YK, Lin TY. Genetic polymorphisms and susceptibility to parenchymal renal infection among pediatric patients. Pediatr Infect Dis J 2011; 30 (4) 309-314
  • 60 Cotton SA, Gbadegesin RA, Williams S, Brenchley PE, Webb NJ. Role of TGF-beta1 in renal parenchymal scarring following childhood urinary tract infection. Kidney Int 2002; 61 (1) 61-67
  • 61 Hussein A, Askar E, Elsaeid M, Schaefer F. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant 2010; 25 (3) 779-785
  • 62 Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 2000; 12 (8) 1232-1235
  • 63 Hughes LB, Criswell LA, Beasley TM , et al. Genetic risk factors for infection in patients with early rheumatoid arthritis. Genes Immun 2004; 5 (8) 641-647
  • 64 Grainger DJ, Heathcote K, Chiano M , et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 1999; 8 (1) 93-97
  • 65 Stevens A, Soden J, Brenchley PE, Ralph S, Ray DW. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 2003; 63 (4) 812-816
  • 66 Yim HE, Bae IS, Yoo KH, Hong YS, Lee JW. Genetic control of VEGF and TGF-beta1 gene polymorphisms in childhood urinary tract infection and vesicoureteral reflux. Pediatr Res 2007; 62 (2) 183-187
  • 67 Solari V, Owen D, Puri P. Association of transforming growth factor-beta1 gene polymorphism with reflux nephropathy. J Urol 2005; 174 (4, Pt 2): 1609-1611 , discussion 1611
  • 68 Zhang D, Zhang G, Hayden MS , et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004; 303 (5663) 1522-1526
  • 69 Andersen-Nissen E, Hawn TR, Smith KD , et al. Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 2007; 178 (8) 4717-4720
  • 70 Schröder NW, Diterich I, Zinke A , et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 2005; 175 (4) 2534-2540
  • 71 Tabel Y, Berdeli A, Mir S. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int J Immunogenet 2007; 34 (6) 399-405
  • 72 Jaillon S, Moalli F, Ragnarsdottir B , et al. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity 2014; 40 (4) 621-632
  • 73 Centi S, Negrisolo S, Stefanic A , et al. Upper urinary tract infections are associated with RANTES promoter polymorphism. J Pediatr 2010; 157 (6) 1038-1040.e1
  • 74 Gbadegesin RA, Cotton SA, Watson CJ, Brenchley PE, Webb NJ. Association between ICAM-1 Gly-Arg polymorphism and renal parenchymal scarring following childhood urinary tract infection. Int J Immunogenet 2006; 33 (1) 49-53
  • 75 Hains DS, Chen X, Saxena V , et al. Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility. Am J Physiol Renal Physiol 2014; 307 (7) F869-F880
  • 76 Paragas N, Kulkarni R, Werth M , et al. α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014; 124 (7) 2963-2976