J Pediatr Genet 2016; 05(01): 015-024
DOI: 10.1055/s-0035-1557109
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Genetics of Nephrotic Syndrome

Michelle N. Rheault
1   Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
,
Rasheed A. Gbadegesin
2   Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
› Author Affiliations
Further Information

Publication History

05 December 2014

21 January 2015

Publication Date:
13 August 2015 (online)

Abstract

Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.

 
  • References

  • 1 McKinney PA, Feltbower RG, Brocklebank JT, Fitzpatrick MM. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol 2001; 16 (12) 1040-1044
  • 2 North American Pediatric Renal Trials and Collaborative Studies. Annual Dialysis Report 2011. Available at: https://web.emmes.com/study/ped/annlrept/annualrept2011.pdf . Accessed December 4, 2014
  • 3 Rheault MN, Wei CC, Hains DS, Wang W, Kerlin BA, Smoyer WE. Increasing frequency of acute kidney injury amongst children hospitalized with nephrotic syndrome. Pediatr Nephrol 2014; 29 (1) 139-147
  • 4 Kari JA. Changing trends of histopathology in childhood nephrotic syndrome in western Saudi Arabia. Saudi Med J 2002; 23 (3) 317-321
  • 5 The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J Pediatr 1981; 98 (4) 561-564
  • 6 Gipson DS, Chin H, Presler TP , et al. Differential risk of remission and ESRD in childhood FSGS. Pediatr Nephrol 2006; 21 (3) 344-349
  • 7 Gbadegesin RA, Winn MP, Smoyer WE. Genetic testing in nephrotic syndrome—challenges and opportunities. Nat Rev Nephrol 2013; 9 (3) 179-184
  • 8 Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol 2013; 9 (10) 587-598
  • 9 Vernier RL, Farquhar MG, Brunson JG, Good RA. Chronic renal disease in children; correlation of clinical findings with morphologic characteristics seen by light and electron microscopy. AMA J Dis Child 1958; 96 (3) 306-343
  • 10 Kalluri R. Proteinuria with and without renal glomerular podocyte effacement. J Am Soc Nephrol 2006; 17 (9) 2383-2389
  • 11 Good KS, O'Brien K, Schulman G, Kerjaschki D, Fogo AB. Unexplained nephrotic-range proteinuria in a 38-year-old man: a case of “no change disease”. Am J Kidney Dis 2004; 43 (5) 933-938
  • 12 D'Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 2004; 43 (2) 368-382
  • 13 Habib R, Gubler MC, Antignac C, Gagnadoux MF. Diffuse mesangial sclerosis: a congenital glomerulopathy with nephrotic syndrome. Adv Nephrol Necker Hosp 1993; 22: 43-57
  • 14 Kestilä M, Lenkkeri U, Männikkö M , et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1998; 1 (4) 575-582
  • 15 Sadowski CE, Lovric S, Ashraf S , et al; the SRNS Study Group. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015; 26 (6) 1279-1289
  • 16 Machuca E, Benoit G, Nevo F , et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol 2010; 21 (7) 1209-1217
  • 17 Patrakka J, Martin P, Salonen R , et al. Proteinuria and prenatal diagnosis of congenital nephrosis in fetal carriers of nephrin gene mutations. Lancet 2002; 359 (9317) 1575-1577
  • 18 Patrakka J, Kestilä M, Wartiovaara J , et al. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int 2000; 58 (3) 972-980
  • 19 Wong W, Morris MC, Kara T. Congenital nephrotic syndrome with prolonged renal survival without renal replacement therapy. Pediatr Nephrol 2013; 28 (12) 2313-2321
  • 20 Boute N, Gribouval O, Roselli S , et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000; 24 (4) 349-354
  • 21 Hinkes B, Vlangos C, Heeringa S , et al; APN Study Group. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2008; 19 (2) 365-371
  • 22 Hinkes BG, Mucha B, Vlangos CN , et al; Arbeitsgemeinschaft für Paediatrische Nephrologie Study Group. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 2007; 119 (4) e907-e919
  • 23 Bouchireb K, Boyer O, Gribouval O , et al. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hum Mutat 2014; 35 (2) 178-186
  • 24 Tsukaguchi H, Sudhakar A, Le TC , et al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J Clin Invest 2002; 110 (11) 1659-1666
  • 25 Tonna S, Wang YY, Wilson D , et al. The R229Q mutation in NPHS2 may predispose to proteinuria in thin-basement-membrane nephropathy. Pediatr Nephrol 2008; 23 (12) 2201-2207
  • 26 Voskarides K, Arsali M, Athanasiou Y, Elia A, Pierides A, Deltas C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr Nephrol 2012; 27 (4) 675-679
  • 27 Reiser J, Polu KR, Möller CC , et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 2005; 37 (7) 739-744
  • 28 Winn MP, Conlon PJ, Lynn KL , et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; 308 (5729) 1801-1804
  • 29 Gigante M, Caridi G, Montemurno E , et al. TRPC6 mutations in children with steroid-resistant nephrotic syndrome and atypical phenotype. Clin J Am Soc Nephrol 2011; 6 (7) 1626-1634
  • 30 Barua M, Brown EJ, Charoonratana VT, Genovese G, Sun H, Pollak MR. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int 2013; 83 (2) 316-322
  • 31 Santín S, Bullich G, Tazón-Vega B , et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2011; 6 (5) 1139-1148
  • 32 Eckel J, Lavin PJ, Finch EA , et al. TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 2011; 22 (3) 526-535
  • 33 Kim JM, Wu H, Green G , et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 2003; 300 (5623) 1298-1300
  • 34 Gigante M, Pontrelli P, Montemurno E , et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 2009; 24 (6) 1858-1864
  • 35 Benoit G, Machuca E, Nevo F, Gribouval O, Lepage D, Antignac C. Analysis of recessive CD2AP and ACTN4 mutations in steroid-resistant nephrotic syndrome. Pediatr Nephrol 2010; 25 (3) 445-451
  • 36 Smrcka AV, Brown JH, Holz GG. Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal 2012; 24 (6) 1333-1343
  • 37 Hinkes B, Wiggins RC, Gbadegesin R , et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 2006; 38 (12) 1397-1405
  • 38 Boyer O, Benoit G, Gribouval O , et al. Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. J Med Genet 2010; 47 (7) 445-452
  • 39 Gbadegesin R, Hinkes BG, Hoskins BE , et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 2008; 23 (4) 1291-1297
  • 40 Gilbert RD, Turner CL, Gibson J , et al. Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis. Kidney Int 2009; 75 (4) 415-419
  • 41 Shirato I, Sakai T, Kimura K, Tomino Y, Kriz W. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am J Pathol 1996; 148 (4) 1283-1296
  • 42 Drenckhahn D, Franke RP. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest 1988; 59 (5) 673-682
  • 43 Kaplan JM, Kim SH, North KN , et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 2000; 24 (3) 251-256
  • 44 Dandapani SV, Sugimoto H, Matthews BD , et al. Alpha-actinin-4 is required for normal podocyte adhesion. J Biol Chem 2007; 282 (1) 467-477
  • 45 Weins A, Schlondorff JS, Nakamura F , et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci U S A 2007; 104 (41) 16080-16085
  • 46 Brown EJ, Schlöndorff JS, Becker DJ , et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 2010; 42 (1) 72-76
  • 47 Boyer O, Benoit G, Gribouval O , et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 2011; 22 (2) 239-245
  • 48 Gbadegesin RA, Lavin PJ, Hall G , et al. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int 2012; 81 (1) 94-99
  • 49 Boyer O, Nevo F, Plaisier E , et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med 2011; 365 (25) 2377-2388
  • 50 Krendel M, Kim SV, Willinger T , et al. Disruption of Myosin 1e promotes podocyte injury. J Am Soc Nephrol 2009; 20 (1) 86-94
  • 51 Mele C, Iatropoulos P, Donadelli R , et al; PodoNet Consortium. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 2011; 365 (4) 295-306
  • 52 Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420 (6916) 629-635
  • 53 Kistler AD, Altintas MM, Reiser J. Podocyte GTPases regulate kidney filter dynamics. Kidney Int 2012; 81 (11) 1053-1055
  • 54 Akilesh S, Suleiman H, Yu H , et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest 2011; 121 (10) 4127-4137
  • 55 Gupta IR, Baldwin C, Auguste D , et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet 2013; 50 (5) 330-338
  • 56 Gee HY, Saisawat P, Ashraf S , et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 2013; 123 (8) 3243-3253
  • 57 Gbadegesin RA, Hall G, Adeyemo A , et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 2014; 25 (9) 1991-2002
  • 58 Quinzii C, Naini A, Salviati L , et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 2006; 78 (2) 345-349
  • 59 Diomedi-Camassei F, Di Giandomenico S, Santorelli FM , et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 2007; 18 (10) 2773-2780
  • 60 Scalais E, Chafai R, Van Coster R , et al. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 2013; 17 (6) 625-630
  • 61 Heeringa SF, Chernin G, Chaki M , et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 2011; 121 (5) 2013-2024
  • 62 Ashraf S, Gee HY, Woerner S , et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 2013; 123 (12) 5179-5189
  • 63 López LC, Schuelke M, Quinzii CM , et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 2006; 79 (6) 1125-1129
  • 64 Gasser DL, Winkler CA, Peng M , et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am J Physiol Renal Physiol 2013; 305 (8) F1228-F1238
  • 65 Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 2008; 358 (26) 2849-2850
  • 66 Kurogouchi F, Oguchi T, Mawatari E , et al. A case of mitochondrial cytopathy with a typical point mutation for MELAS, presenting with severe focal-segmental glomerulosclerosis as main clinical manifestation. Am J Nephrol 1998; 18 (6) 551-556
  • 67 Yorifuji T, Kawai M, Momoi T , et al. Nephropathy and growth hormone deficiency in a patient with mitochondrial tRNA(Leu(UUR)) mutation. J Med Genet 1996; 33 (7) 621-622
  • 68 Miner JH. The glomerular basement membrane. Exp Cell Res 2012; 318 (9) 973-978
  • 69 Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 2013; 9 (4) 200-210
  • 70 Zenker M, Aigner T, Wendler O , et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004; 13 (21) 2625-2632
  • 71 Matejas V, Hinkes B, Alkandari F , et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat 2010; 31 (9) 992-1002
  • 72 Has C, Spartà G, Kiritsi D , et al. Integrin α3 mutations with kidney, lung, and skin disease. N Engl J Med 2012; 366 (16) 1508-1514
  • 73 Kambham N, Tanji N, Seigle RL , et al. Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. Am J Kidney Dis 2000; 36 (1) 190-196
  • 74 Gross O, Perin L, Deltas C. Alport syndrome from bench to bedside: the potential of current treatment beyond RAAS blockade and the horizon of future therapies. Nephrol Dial Transplant 2014; 29 (Suppl. 04) iv124-iv130
  • 75 Malone AF, Phelan PJ, Hall G , et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 2014; 86 (6) 1253-1259
  • 76 Miner JH. Pathology vs. molecular genetics: (re)defining the spectrum of Alport syndrome. Kidney Int 2014; 86 (6) 1081-1083
  • 77 Pierides A, Voskarides K, Athanasiou Y , et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol Dial Transplant 2009; 24 (9) 2721-2729
  • 78 Niaudet P, Gubler MC. WT1 and glomerular diseases. Pediatr Nephrol 2006; 21 (11) 1653-1660
  • 79 Wagner N, Wagner KD, Xing Y, Scholz H, Schedl A. The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1. J Am Soc Nephrol 2004; 15 (12) 3044-3051
  • 80 Guo G, Morrison DJ, Licht JD, Quaggin SE. WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. J Am Soc Nephrol 2004; 15 (11) 2851-2856
  • 81 Ratelade J, Arrondel C, Hamard G , et al. A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Hum Mol Genet 2010; 19 (1) 1-15
  • 82 Pelletier J, Bruening W, Kashtan CE , et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67 (2) 437-447
  • 83 Lipska BS, Ranchin B, Iatropoulos P , et al; PodoNet Consortium. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int 2014; 85 (5) 1169-1178
  • 84 Barbaux S, Niaudet P, Gubler MC , et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997; 17 (4) 467-470
  • 85 Gwin K, Cajaiba MM, Caminoa-Lizarralde A, Picazo ML, Nistal M, Reyes-Múgica M. Expanding the clinical spectrum of Frasier syndrome. Pediatr Dev Pathol 2008; 11 (2) 122-127
  • 86 Hall G, Gbadegesin RA, Lavin P , et al. A novel missense mutation of Wilms' Tumor 1 causes autosomal dominant FSGS. J Am Soc Nephrol 2015; 26 (4) 831-843
  • 87 Sarin S, Javidan A, Boivin F , et al. Insights into the renal pathogenesis in Schimke immuno-osseous dysplasia: a renal histological characterization and expression analysis. J Histochem Cytochem 2015; 63 (1) 32-44
  • 88 Boerkoel CF, Takashima H, John J , et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 2002; 30 (2) 215-220
  • 89 Burghardt T, Kastner J, Suleiman H , et al. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. J Am Soc Nephrol 2013; 24 (11) 1830-1848
  • 90 Lemley KV. Kidney disease in nail-patella syndrome. Pediatr Nephrol 2009; 24 (12) 2345-2354
  • 91 Sweeney E, Fryer A, Mountford R, Green A, McIntosh I. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet 2003; 40 (3) 153-162
  • 92 Boyer O, Woerner S, Yang F , et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 2013; 24 (8) 1216-1222
  • 93 Esposito T, Lea RA, Maher BH , et al. Unique X-linked familial FSGS with co-segregating heart block disorder is associated with a mutation in the NXF5 gene. Hum Mol Genet 2013; 22 (18) 3654-3666
  • 94 Galloway WH, Mowat AP. Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs. J Med Genet 1968; 5 (4) 319-321
  • 95 Colin E, Huynh Cong E, Mollet G , et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014; 95 (6) 637-648
  • 96 Amsellem S, Gburek J, Hamard G , et al. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 2010; 21 (11) 1859-1867
  • 97 Hauck FH, Tanner SM, Henker J, Laass MW. Imerslund-Gräsbeck syndrome in a 15-year-old German girl caused by compound heterozygous mutations in CUBN. Eur J Pediatr 2008; 167 (6) 671-675
  • 98 Balreira A, Gaspar P, Caiola D , et al. A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum Mol Genet 2008; 17 (14) 2238-2243
  • 99 Berkovic SF, Dibbens LM, Oshlack A , et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 2008; 82 (3) 673-684
  • 100 Vande Walle J, Donckerwolcke R, Boer P, van Isselt HW, Koomans HA, Joles JA. Blood volume, colloid osmotic pressure and F-cell ratio in children with the nephrotic syndrome. Kidney Int 1996; 49 (5) 1471-1477
  • 101 Ozaltin F, Ibsirlioglu T, Taskiran EZ , et al; PodoNet Consortium. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet 2011; 89 (1) 139-147
  • 102 Ozaltin F, Li B, Rauhauser A , et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol 2013; 24 (3) 377-384
  • 103 Sanna-Cherchi S, Burgess KE, Nees SN , et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int 2011; 80 (4) 389-396
  • 104 Agarwal AK, Zhou XJ, Hall RK , et al. Focal segmental glomerulosclerosis in patients with mandibuloacral dysplasia owing to ZMPSTE24 deficiency. J Investig Med 2006; 54 (4) 208-213
  • 105 Sethi S, Fervenza FC, Zhang Y, Smith RJ. Secondary focal and segmental glomerulosclerosis associated with single-nucleotide polymorphisms in the genes encoding complement factor H and C3. Am J Kidney Dis 2012; 60 (2) 316-321
  • 106 Fisher PW, Ho LT, Goldschmidt R, Semerdjian RJ, Rutecki GW. Familial Mediterranean fever, inflammation and nephrotic syndrome: fibrillary glomerulopathy and the M680I missense mutation. BMC Nephrol 2003; 4: 6
  • 107 Friedman DJ, Kozlitina J, Genovese G, Jog P, Pollak MR. Population-based risk assessment of APOL1 on renal disease. J Am Soc Nephrol 2011; 22 (11) 2098-2105
  • 108 Limou S, Nelson GW, Kopp JB, Winkler CA. APOL1 kidney risk alleles: population genetics and disease associations. Adv Chronic Kidney Dis 2014; 21 (5) 426-433
  • 109 Kopp JB, Nelson GW, Sampath K , et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 2011; 22 (11) 2129-2137
  • 110 Okamoto K, Tokunaga K, Doi K , et al. Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 2011; 43 (5) 459-463
  • 111 Chehade H, Cachat F, Girardin E , et al. Two new families with hereditary minimal change disease. BMC Nephrol 2013; 14: 65
  • 112 Gee HY, Ashraf S, Wan X , et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet 2014; 94 (6) 884-890
  • 113 Gbadegesin RA, Adeyemo A, Webb NJ , et al; Members of the Mid-West Pediatric Nephrology Consortium. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 2014; ; In press. Doi: 10.1681/ASN.2014030247