J Pediatr Intensive Care 2015; 04(02): 087-096
DOI: 10.1055/s-0035-1556751
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Multidrug-Resistant Organisms: Considerations in Antibiotic Selection and Administration

Leah Molloy
1   Department of Pharmacy, Children's Hospital of Michigan, Detroit, Michigan, United States
,
Harbir Arora
2   Division of Infectious Diseases, Children's Hospital of Michigan, Detroit, Michigan, United States
,
Shipra Gupta
2   Division of Infectious Diseases, Children's Hospital of Michigan, Detroit, Michigan, United States
,
Jesse Sutton
3   Department of Pharmacy, Baptist Health Louisville, Louisville, Kentucky, United States
,
Nahed Abdel-Haq
2   Division of Infectious Diseases, Children's Hospital of Michigan, Detroit, Michigan, United States
4   Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan, United States
› Author Affiliations
Further Information

Publication History

23 September 2014

02 December 2014

Publication Date:
28 August 2015 (online)

Abstract

Managing infections caused by multidrug-resistant organisms is a significant clinical challenge. Multidrug-resistant organisms' treatment is complicated in the pediatric population because of the lack of primary data, treatment guidelines, rapidly changing pharmacokinetic/pharmacodynamic parameters, and fewer approved antibiotic indications and dosing guidance. Treatment decisions must incorporate available pediatric data, clinical experience, and careful extrapolation from adult data while considering the unique challenges faced by children with complicated infections.

 
  • References

  • 1 Fish DN, Ohlinger MJ. Antimicrobial resistance: factors and outcomes. Crit Care Clin 2006; 22 (2) 291-311 , vii
  • 2 Barsanti MC, Woeltje KF. Infection prevention in the intensive care unit. Infect Dis Clin North Am 2009; 23 (3) 703-725
  • 3 Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas) 2011; 47 (3) 137-146
  • 4 Foglia EE, Fraser VJ, Elward AM. Effect of nosocomial infections due to antibiotic-resistant organisms on length of stay and mortality in the pediatric intensive care unit. Infect Control Hosp Epidemiol 2007; 28 (3) 299-306
  • 5 Tsai MH, Chu SM, Hsu JF , et al. Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics 2014; 133 (2) e322-e329
  • 6 Creel AM, Durham SH, Benner KW, Alten JA, Winkler MK. Severe invasive community-associated methicillin-resistant Staphylococcus aureus infections in previously healthy children. Pediatr Crit Care Med 2009; 10 (3) 323-327
  • 7 Zervou FN, Zacharioudakis IM, Ziakas PD, Mylonakis E. MRSA colonization and risk of infection in the neonatal and pediatric ICU: a meta-analysis. Pediatrics 2014; 133 (4) e1015-e1023
  • 8 Iwamoto M, Mu Y, Lynfield R , et al. Trends in invasive methicillin-resistant Staphylococcus aureus infections. Pediatrics 2013; 132 (4) e817-e824
  • 9 Liu C, Bayer A, Cosgrove SE , et al; Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011; 52 (3) e18-e55
  • 10 Saito N, Aoki K, Sakurai T , et al. Linezolid treatment for intracranial abscesses caused by methicillin-resistant Staphylococcus aureus—two case reports. Neurol Med Chir (Tokyo) 2010; 50 (6) 515-517
  • 11 Sabbatani S, Manfredi R, Frank G, Chiodo F. Linezolid in the treatment of severe central nervous system infections resistant to recommended antimicrobial compounds. Infez Med 2005; 13 (2) 112-119
  • 12 Myrianthefs P, Markantonis SL, Vlachos K , et al. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob Agents Chemother 2006; 50 (12) 3971-3976
  • 13 Yogev R, Damle B, Levy G, Nachman S. Pharmacokinetics and distribution of linezolid in cerebrospinal fluid in children and adolescents. Pediatr Infect Dis J 2010; 29 (9) 827-830
  • 14 Fowler Jr VG, Miro JM, Hoen B , et al; ICE Investigators. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 2005; 293 (24) 3012-3021
  • 15 Miro JM, Anguera I, Cabell CH , et al; International Collaboration on Endocarditis Merged Database Study Group. Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis 2005; 41 (4) 507-514
  • 16 Murray KP, Zhao JJ, Davis SL , et al. Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/L: a matched cohort study. Clin Infect Dis 2013; 56 (11) 1562-1569
  • 17 Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis 2012; 54 (1) 51-58
  • 18 Karchmer AW, Archer GL, Dismukes WE. Rifampin treatment of prosthetic valve endocarditis due to Staphylococcus epidermidis. Rev Infect Dis 1983; 5 (Suppl. 03) S543-S548
  • 19 Karchmer AW, Archer GL, Dismukes WE. Staphylococcus epidermidis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy. Ann Intern Med 1983; 98 (4) 447-455
  • 20 Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA. Development of Daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43 (10) 5285-5287
  • 21 Vikram HR, Havill NL, Koeth LM, Boyce JM. Clinical progression of methicillin-resistant Staphylococcus aureus vertebral osteomyelitis associated with reduced susceptibility to daptomycin. J Clin Microbiol 2005; 43 (10) 5384-5387
  • 22 Appelbaum PC. Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 2007; 30 (5) 398-408
  • 23 Swenson JM, Anderson KF, Lonsway DR , et al. Accuracy of commercial and reference susceptibility testing methods for detecting vancomycin-intermediate Staphylococcus aureus. J Clin Microbiol 2009; 47 (7) 2013-2017
  • 24 Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother 2006; 58 (2) 273-280
  • 25 Hidron AI, Edwards JR, Patel J , et al; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008; 29 (11) 996-1011
  • 26 Malathum K, Murray BE. Vancomycin-resistant enterococci: recent advances in genetics, epidemiology and therapeutic options. Drug Resist Updat 1999; 2 (4) 224-243
  • 27 DiazGranados CA, Zimmer SM, Klein M, Jernigan JA. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin Infect Dis 2005; 41 (3) 327-333
  • 28 Haas EJ, Zaoutis TE, Prasad P, Li M, Coffin SE. Risk factors and outcomes for vancomycin-resistant enterococcus bloodstream infection in children. Infect Control Hosp Epidemiol 2010;
  • 29 Twilla JD, Finch CK, Usery JB, Gelfand MS, Hudson JQ, Broyles JE. Vancomycin-resistant Enterococcus bacteremia: an evaluation of treatment with linezolid or daptomycin. J Hosp Med 2012; 7 (3) 243-248
  • 30 Crank CW, Scheetz MH, Brielmaier B , et al. Comparison of outcomes from daptomycin or linezolid treatment for vancomycin-resistant enterococcal bloodstream infection: a retrospective, multicenter, cohort study. Clin Ther 2010; 32 (10) 1713-1719
  • 31 Deville JG, Goldfarb J, Kaplan SL , et al. The use of linezolid in the treatment of paediatric patients with infections caused by enterococci including strains resistant to vancomycin. J Antimicrob Chemother 2010; 65 (10) 2267-2270
  • 32 Arias CA, Contreras GA, Murray BE. Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 2010; 16 (6) 555-562
  • 33 Baddour LM, Wilson WR, Bayer AS , et al; Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease; Council on Cardiovascular Disease in the Young; Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia; American Heart Association; Infectious Diseases Society of America. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 2005; 111 (23) e394-e434
  • 34 Jenkins I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: successful treatment with tigecycline and daptomycin. J Hosp Med 2007; 2 (5) 343-344
  • 35 Schutt AC, Bohm NM. Multidrug-resistant Enterococcus faecium endocarditis treated with combination tigecycline and high-dose daptomycin. Ann Pharmacother 2009; 43 (12) 2108-2112
  • 36 Polidori M, Nuccorini A, Tascini C , et al. Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J Chemother 2011; 23 (4) 240-241
  • 37 Sakoulas G, Rose W, Nonejuie P , et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 2014; 58 (3) 1494-1500
  • 38 Hall Snyder A, Werth BJ, Barber KE, Sakoulas G, Rybak MJ. Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. J Antimicrob Chemother 2014; 69 (8) 2148-2154
  • 39 Zeana C, Kubin CJ, Della-Latta P, Hammer SM. Vancomycin-resistant Enterococcus faecium meningitis successfully managed with linezolid: case report and review of the literature. Clin Infect Dis 2001; 33 (4) 477-482
  • 40 Krueger WA, Kottler B, Will BE, Heininger A, Guggenberger H, Unertl KE. Treatment of meningitis due to methicillin-resistant Staphylococcus epidermidis with linezolid. J Clin Microbiol 2004; 42 (2) 929-932
  • 41 Graham PL, Ampofo K, Saiman L. Linezolid treatment of vancomycin-resistant Enterococcus faecium ventriculitis. Pediatr Infect Dis J 2002; 21 (8) 798-800
  • 42 da Silva PS, Monteiro Neto H, Sejas LM. Successful treatment of vancomycin-resistant enterococcus ventriculitis in a child. Braz J Infect Dis 2007; 11 (2) 297-299
  • 43 Maranich AM, Rajnik M. Successful treatment of vancomycin-resistant enterococcal ventriculitis in a pediatric patient with linezolid. Mil Med 2008; 173 (9) 927-929
  • 44 Jaspan HB, Brothers AW, Campbell AJ , et al. Multidrug-resistant Enterococcus faecium meningitis in a toddler: characterization of the organism and successful treatment with intraventricular daptomycin and intravenous tigecycline. Pediatr Infect Dis J 2010; 29 (4) 379-381
  • 45 Pintado V, Cabellos C, Moreno S, Meseguer MA, Ayats J, Viladrich PF. Enterococcal meningitis: a clinical study of 39 cases and review of the literature. Medicine (Baltimore) 2003; 82 (5) 346-364
  • 46 Heintz BH, Halilovic J, Christensen CL. Vancomycin-resistant enterococcal urinary tract infections. Pharmacotherapy 2010; 30 (11) 1136-1149
  • 47 Hoban DJ, Lascols C, Nicolle LE , et al. Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009-2010. Diagn Microbiol Infect Dis 2012; 74 (1) 62-67
  • 48 Dudley MN, Ambrose PG, Bhavnani SM, Craig WA, Ferraro MJ, Jones RN ; Antimicrobial Susceptibility Testing Subcommittee of the Clinical and Laboratory Standards Institute. Background and rationale for revised clinical and laboratory standards institute interpretive criteria (Breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I. Cephalosporins and Aztreonam. Clin Infect Dis 2013; 56 (9) 1301-1309
  • 49 Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2001; 45 (12) 3548-3554
  • 50 Paterson DL, Ko WC, Von Gottberg A , et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 2001; 39 (6) 2206-2212
  • 51 Lee NY, Lee CC, Huang WH, Tsui KC, Hsueh PR, Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 2013; 56 (4) 488-495
  • 52 Lee B, Kang SY, Kang HM , et al. Outcome of antimicrobial therapy of pediatric urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae. Infect Chemother 2013; 45 (4) 415-421
  • 53 Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 2012; 67 (12) 2793-2803
  • 54 Rodríguez-Baño J, Navarro MD, Retamar P, Picón E, Pascual Á ; Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 2012; 54 (2) 167-174
  • 55 Dalgic N, Sancar M, Bayraktar B, Dincer E, Pelit S. Ertapenem for the treatment of urinary tract infections caused by extended-spectrum β-lactamase-producing bacteria in children. Scand J Infect Dis 2011; 43 (5) 339-343
  • 56 Macdougall C. Beyond susceptible and resistant, part I: treatment of infections due to Gram-negative organisms with inducible β-lactamases. J Pediatr Pharmacol Ther 2011; 16 (1) 23-30
  • 57 Kang CI, Kim SH, Park WB , et al. Bloodstream infections caused by Enterobacter species: predictors of 30-day mortality rate and impact of broad-spectrum cephalosporin resistance on outcome. Clin Infect Dis 2004; 39 (6) 812-818
  • 58 Chow JW, Fine MJ, Shlaes DM , et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991; 115 (8) 585-590
  • 59 Nikaido H, Liu W, Rosenberg EY. Outer membrane permeability and beta-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother 1990; 34 (2) 337-342
  • 60 Kang CI, Pai H, Kim SH , et al. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother 2004; 54 (6) 1130-1133
  • 61 Siedner MJ, Galar A, Guzmán-Suarez BB , et al. Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia. Clin Infect Dis 2014; 58 (11) 1554-1563
  • 62 Tamma PD, Girdwood SC, Gopaul R , et al. The use of cefepime for treating AmpC β-lactamase-producing Enterobacteriaceae. Clin Infect Dis 2013; 57 (6) 781-788
  • 63 Pakyz AL, Oinonen M, Polk RE. Relationship of carbapenem restriction in 22 university teaching hospitals to carbapenem use and carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53 (5) 1983-1986
  • 64 Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011; 53 (1) 60-67
  • 65 Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55 (11) 4943-4960
  • 66 Pogue JM, Mann T, Barber KE, Kaye KS. Carbapenem-resistant Acinetobacter baumannii: epidemiology, surveillance and management. Expert Rev Anti Infect Ther 2013; 11 (4) 383-393
  • 67 Daikos GL, Tsaousi S, Tzouvelekis LS , et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 2014; 58 (4) 2322-2328
  • 68 Durante-Mangoni E, Signoriello G, Andini R , et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 57 (3) 349-358
  • 69 Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother 2011; 66 (9) 2070-2074
  • 70 Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence?. Expert Rev Anti Infect Ther 2013; 11 (12) 1355-1362
  • 71 Zavascki AP, Bulitta JB, Landersdorfer CB. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev Anti Infect Ther 2013; 11 (12) 1333-1353
  • 72 Tumbarello M, Viale P, Viscoli C , et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 55 (7) 943-950
  • 73 Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2014; 20 (9) 862-872
  • 74 Paul M, Carmeli Y, Durante-Mangoni E , et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother 2014; 69 (9) 2305-2309
  • 75 Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems?. Clin Microbiol Infect 2011; 17 (8) 1135-1141
  • 76 Qureshi ZA, Paterson DL, Potoski BA , et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 2012; 56 (4) 2108-2113
  • 77 Bergen PJ, Tsuji BT, Bulitta JB , et al. Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2011; 55 (12) 5685-5695
  • 78 Deris ZZ, Yu HH, Davis K , et al. The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2012; 56 (10) 5103-5112
  • 79 Lora-Tamayo J, Murillo O, Bergen PJ , et al. Activity of colistin combined with doripenem at clinically relevant concentrations against multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. J Antimicrob Chemother 2014; 69 (9) 2434-2442
  • 80 Montero A, Ariza J, Corbella X , et al. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J Antimicrob Chemother 2004; 54 (6) 1085-1091
  • 81 Zusman O, Avni T, Leibovici L , et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 2013; 57 (10) 5104-5111
  • 82 Jaruratanasirikul S, Limapichat T, Jullangkoon M, Aeinlang N, Ingviya N, Wongpoowarak W. Pharmacodynamics of meropenem in critically ill patients with febrile neutropenia and bacteraemia. Int J Antimicrob Agents 2011; 38 (3) 231-236
  • 83 Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese?. Clin Infect Dis 2014; 59 (1) 88-94
  • 84 Celebi S, Hacimustafaoglu M, Koksal N, Ozkan H, Cetinkaya M. Colistimethate sodium therapy for multidrug-resistant isolates in pediatric patients. Pediatr Int 2010; 52 (3) 410-414
  • 85 Falagas ME, Sideri G, Vouloumanou EK, Papadatos JH, Kafetzis DA. Intravenous colistimethate (colistin) use in critically ill children without cystic fibrosis. Pediatr Infect Dis J 2009; 28 (2) 123-127
  • 86 Iosifidis E, Antachopoulos C, Ioannidou M , et al. Colistin administration to pediatric and neonatal patients. Eur J Pediatr 2010; 169 (7) 867-874
  • 87 Kapoor K, Jajoo M, Dublish S, Dabas V, Gupta S, Manchanda V. Intravenous colistin for multidrug-resistant gram-negative infections in critically ill pediatric patients. Pediatr Crit Care Med 2013; 14 (6) e268-e272
  • 88 Karbuz A, Özdemir H, Yaman A , et al. The use of colistin in critically ill children in a pediatric intensive care unit. Pediatr Infect Dis J 2014; 33 (1) e19-e24
  • 89 Garonzik SM, Li J, Thamlikitkul V , et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 55 (7) 3284-3294
  • 90 Mohamed AF, Karaiskos I, Plachouras D , et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother 2012; 56 (8) 4241-4249
  • 91 Kim J, Lee KH, Yoo S, Pai H. Clinical characteristics and risk factors of colistin-induced nephrotoxicity. Int J Antimicrob Agents 2009; 34 (5) 434-438
  • 92 Sader HS, Flamm RK, Jones RN. Tigecycline activity tested against antimicrobial resistant surveillance subsets of clinical bacteria collected worldwide (2011). Diagn Microbiol Infect Dis 2013; 76 (2) 217-221
  • 93 Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 2009; 34 (2) 111-120
  • 94 Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014; 74 (12) 1315-1333
  • 95 Bhavnani SM, Rubino CM, Hammel JP , et al. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob Agents Chemother 2012; 56 (2) 1065-1072
  • 96 De Pascale G, Montini L, Pennisi M , et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care 2014; 18 (3) R90
  • 97 Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013; 57 (4) 1756-1762
  • 98 Freire AT, Melnyk V, Kim MJ , et al; 311 Study Group. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010; 68 (2) 140-151
  • 99 Kim NH, Hwang JH, Song KH , et al. Tigecycline in carbapenem-resistant Acinetobacter baumannii bacteraemia: susceptibility and clinical outcome. Scand J Infect Dis 2013; 45 (4) 315-319
  • 100 Purdy J, Jouve S, Yan JL , et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: a multicenter, open-label, ascending-dose study. Clin Ther 2012; 34 (2) 496-507.e1
  • 101 De Luca M, Angelino G, Calò Carducci FI , et al. Multidrug-resistant Acinetobacter baumannii infection in children. BMJ Case Rep 2011; 2011: 1-5
  • 102 Tygacil ® [package insert]. Philadelphia, PA: Wyeth Pharmaceuticals Inc.; 2014
  • 103 Chan JD, Graves JA, Dellit TH. Antimicrobial treatment and clinical outcomes of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. J Intensive Care Med 2010; 25 (6) 343-348
  • 104 Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob 2012; 11: 32
  • 105 Satlin MJ, Kubin CJ, Blumenthal JS , et al. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob Agents Chemother 2011; 55 (12) 5893-5899
  • 106 Giamarellos-Bourboulis EJ, Xirouchaki E, Giamarellou H. Interactions of colistin and rifampin on multidrug-resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 2001; 40 (3) 117-120
  • 107 Pantopoulou A, Giamarellos-Bourboulis EJ, Raftogannis M , et al. Colistin offers prolonged survival in experimental infection by multidrug-resistant Acinetobacter baumannii: the significance of co-administration of rifampicin. Int J Antimicrob Agents 2007; 29 (1) 51-55
  • 108 Song JY, Kee SY, Hwang IS , et al. In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 2007; 60 (2) 317-322
  • 109 Aydemir H, Akduman D, Piskin N , et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 2013; 141 (6) 1214-1222
  • 110 Bassetti M, Repetto E, Righi E , et al. Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. J Antimicrob Chemother 2008; 61 (2) 417-420
  • 111 Pogue JM, Lee J, Marchaim D , et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis 2011; 53 (9) 879-884
  • 112 Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 2012; 67 (2) 255-268
  • 113 Neuner EA, Sekeres J, Hall GS, van Duin D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother 2012; 56 (11) 5744-5748
  • 114 Reffert JL, Smith WJ ; Insights from the Society of Infectious Diseases Pharmacists. Fosfomycin for the treatment of resistant gram-negative bacterial infections. Pharmacotherapy 2014; 34 (8) 845-857
  • 115 Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis 2012; 2012: 976273
  • 116 Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 2009; 58 (Pt 9) 1133-1148
  • 117 Wispelwey B. Clinical implications of pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Infect Dis 2005; 41 (Suppl. 02) S127-S135
  • 118 Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 2010; 65 (8) 1725-1732
  • 119 Adnan S, Paterson DL, Lipman J, Roberts JA. Ampicillin/sulbactam: its potential use in treating infections in critically ill patients. Int J Antimicrob Agents 2013; 42 (5) 384-389
  • 120 Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J Infect 2008; 56 (6) 432-436
  • 121 Levin AS, Levy CE, Manrique AE, Medeiros EA, Costa SF. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int J Antimicrob Agents 2003; 21 (1) 58-62
  • 122 Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349 (12) 1157-1167
  • 123 Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44 (3) 357-363
  • 124 Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26 (1) 1-10 , quiz 11–12
  • 125 Courter JD, Kuti JL, Girotto JE, Nicolau DP. Optimizing bactericidal exposure for beta-lactams using prolonged and continuous infusions in the pediatric population. Pediatr Blood Cancer 2009; 53 (3) 379-385
  • 126 Drusano GL, Louie A. Optimization of aminoglycoside therapy. Antimicrob Agents Chemother 2011; 55 (6) 2528-2531
  • 127 Flume PA, Mogayzel Jr PJ, Robinson KA , et al; Clinical Practice Guidelines for Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 2009; 180 (9) 802-808
  • 128 Touw DJ. Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis. Pharm World Sci 1998; 20 (4) 149-160
  • 129 Rybak M, Lomaestro B, Rotschafer JC , et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009; 66 (1) 82-98
  • 130 Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 2011; 52 (8) 975-981
  • 131 Le J, Bradley JS, Murray W , et al. Improved vancomycin dosing in children using area under the curve exposure. Pediatr Infect Dis J 2013; 32 (4) e155-e163
  • 132 Frymoyer A, Guglielmo BJ, Hersh AL. Desired vancomycin trough serum concentration for treating invasive methicillin-resistant Staphylococcal infections. Pediatr Infect Dis J 2013; 32 (10) 1077-1079
  • 133 Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother 2006; 57 (4) 699-704
  • 134 Truong J, Levkovich BJ, Padiglione AA. Simple approach to improving vancomycin dosing in intensive care: a standardised loading dose results in earlier therapeutic levels. Intern Med J 2012; 42 (1) 23-29
  • 135 El Nekidy WS, El-Masri MM, Umstead GS, Dehoorne-Smith M. Factors influencing vancomycin loading dose for hospitalized hemodialysis patients: prospective observational cohort study. Can J Hosp Pharm 2012; 65 (6) 436-442
  • 136 Demirjian A, Finkelstein Y, Nava-Ocampo A , et al. A randomized controlled trial of a vancomycin loading dose in children. Pediatr Infect Dis J 2013; 32 (11) 1217-1223
  • 137 Bradley JS, Jackson MA ; Committee on Infectious Diseases; American Academy of Pediatrics. The use of systemic and topical fluoroquinolones. Pediatrics 2011; 128 (4) e1034-e1045
  • 138 Bradley JS, Kauffman RE, Balis DA , et al. Assessment of musculoskeletal toxicity 5 years after therapy with levofloxacin. Pediatrics 2014; 134 (1) e146-e153
  • 139 Abdel-Rahman SM, Chandorkar G, Akins RL , et al. Single-dose pharmacokinetics and tolerability of daptomycin 8 to 10 mg/kg in children aged 2 to 6 years with suspected or proved Gram-positive infections. Pediatr Infect Dis J 2011; 30 (8) 712-714
  • 140 Abdel-Rahman SM, Benziger DP, Jacobs RF, Jafri HS, Hong EF, Kearns GL. Single-dose pharmacokinetics of daptomycin in children with suspected or proved gram-positive infections. Pediatr Infect Dis J 2008; 27 (4) 330-334
  • 141 Kullar R, Davis SL, Levine DP , et al. High-dose daptomycin for treatment of complicated gram-positive infections: a large, multicenter, retrospective study. Pharmacotherapy 2011; 31 (6) 527-536
  • 142 Cubist Pharmaceuticals. A multicenter, randomized, double-blinded comparative study to evaluate the efficacy, safety, and pharmacokinetics of daptomycin versus active comparator in pediatric subjects with acute hematogenous osteomyelitis due to Gram-positive organisms. Bethesda (MD): National Library of Medicine (US). 2000 Available at: http://clinicaltrials.gov/ct2/show/NCT01922011 . Accessed September 12, 2014