TRP depletion was confirmed in these studies and was similar to that found in our previous studies [9] hence the model was validated. Both pineal melatonin and 5-HT content were significantly reduced in TRP depleted animals even as early as after 4 days of depletion. Interestingly, a very recent article demonstrates that 5-HT depletion in mice disrupts their sleep-wake cycle and motor activity [4]. It is therefore plausible that similar 5-HT depletion and subsequent pineal melatonin reductions in female rats here could indeed have the same end-point effects. Interestingly, patients with severe depression also demonstrate reduced melatonin levels in parallel with sleep disturbance [3]. Both serum corticosterone and aldosterone were increased in TRP depleted animals [11] and aldosterone has a causal relationship with the development of anxiety and depression-like behaviour [12] and is a common feature in patients with resistant depression [1]. Significant correlations between pineal melatonin and these hormones (even though that for aldosterone was less strong) underpin our assumption that sleep quality may be disrupted in TRP depleted animals. Pineal NA content was generally unaltered by the TRP depletion process and thus suggests that this played no part in other ongoing biochemical and behavioural changes at this time.