Der Klinikarzt 2015; 44(5): 238-242
DOI: 10.1055/s-0035-1555649
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Kontinuierliche nicht-invasive Blutdruckmessung mittels Pulswellenlaufzeit – Für welche Anwendungsgebiete ist sie attraktiv?

Continuous and non-interacting blood pressure measurement using the pulse transit time – For which applications is it attractive?
Andreas Patzak
1   Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
02 June 2015 (online)

Die Blutdruckmessung im Schlaf hat Bedeutung für die Diagnose und Behandlung der arteriellen Hypertonie. Insbesondere aber die kontinuierliche Erfassung des Blutdrucks (BD) wird für die Untersuchung schlafbezogener transienter Blutdruckänderungen immer wichtiger. Die vorliegende Schrift stellt eine Methode der nicht-invasiven kontinuierlichen und indirekten Bestimmung des arteriellen Blutdrucks vor, die auf der Messung der Pulswellenlaufzeit beruht. Validierungsstudien, bei denen diese Methode mit der intraarteriellen Messung (Goldstandard) sowie Manschettentechniken verglichen wurde, zeigen klinisch akzeptable Differenzen. Kontinuierliche Messung und Rückwirkungsfreiheit machen die Bestimmung des Blutdrucks mittels Pulslaufzeit in der Schlafmedizin, aber auch für andere Anwendungen attraktiv.

Measurement of blood pressure (BP) during sleep is important for diagnosis and therapy of arterial hypertension. The continuous blood pressure measurement is interesting especially for the detection of transient sleep related blood pressure fluctuations. This paper introduces a continuous, non-invasive, and indirect blood pressure measurement using the pulse transit time. Validation of this method against intra-arterial measurements and cuff-based methods reveal usefulness for the measurement of nocturnal blood pressure fluctuations. Continuous and non-interacting measurements render this method attractive for sleep medicine as well as for other applications in medicine.

 
  • Literatur

  • 1 Jaffe LM, Kjekshus J, Gottlieb SS. Importance and management of chronic sleep apnoea in cardiology. Eur Heart J 2013; 34: 809-815
  • 2 Phillips CL, Butlin M, Wong KK, Avolio AP. Is obstructive sleep apnoea causally related to arterial stiffness? A critical review of the experimental evidence. Sleep Med Rev 2013; 17: 7-18
  • 3 Mitchell GF, Parise H, Benjamin EJ et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 2004; 43: 1239-1245
  • 4 Schiffrin EL. Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am J Hypertens 2004; 17
  • 5 Pitson DJ, Stradling JR. Value of beat-to-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/hypopnoea syndrome. Eur Respir J 1998; 12: 685-692
  • 6 Gesche H, Grosskurth D, Küchler G, Patzak A. Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur J Appl Physiol 2012; 112: 309-315
  • 7 Wong MY, Pickwell-MacPherson E, Zhang YT, Cheng JC. The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. Eur J Appl Physiol 2011; 111: 135-144
  • 8 Payne RA, Symeonides CN, Webb DJ, Maxwell SR. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J Appl Physiol 2006; 100: 136-141
  • 9 Versluis RG, Petri H, van de Ven CM et al. Usefulness of armspan and height comparison in detecting vertebral deformities in women. Osteoporos Int 1999; 9: 129-133
  • 10 Jago JR, Murray A. Repeatability of peripheral pulse measurements on ears, fingers and toes using photoelectric plethysmography. Clin Phys Physiol Meas 1988; 9: 319-330
  • 11 Geddes LA, Voelz MH, Babbs CF et al. Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 1981; 18: 71-74
  • 12 Pollak MH, Obrist PA. Aortic-radial pulse transit time and ECG Q-wave to radial pulse wave interval as indices of beat-by-beat blood pressure change. Psychophysiology 1983; 20: 21-28
  • 13 Young CC, Mark JB, White W, Fleming A. et al. Clinical evaluation of continuous noninvasive blood pressure monitoring: accuracy and tracking capabilities. J Clin Monit 1995; 11: 245-252
  • 14 Wippermann CF, Schranz D, Huth RG. Evaluation of the pulse wave arrival time as a marker for blood pressure changes in critically ill infants and children. J Clin Monit 1995; 11: 324-328
  • 15 Lutter N, Engl HG, Fischer F, Bauer RD. Noninvasive continuous blood pressure control by pulse wave velocity. Z Kardiol 1996; 85 (Suppl. 03) 124-126
  • 16 Bartsch S, Ostojic D, Schmalgemeier H et al. Validierung der kontinuierlichen nicht-invasiven Blutdruckmessung mittels Puls-Transit-Zeit: Ein Vergleich mit der invasiven Blutdruckmessung bei Patienten einer kardiologischen Intensivstation. DEP - 20101124. Dtsch Med Wochenschr 2010; 135: 2406-2412
  • 17 Patzak A, Mendoza Y, Gesche H, Konermann M. Continuous blood pressure measurement by using the pulse transit time: comparison to intra-arterial measurement. Blood press 2015; 10: 1-5
  • 18 Sawada Y, Yamakoshi K. A correlation analysis between pulse transit time and instantaneous blood pressure measured indirectly by the vascular unloading method. Biol Psychol 1985; 21: 1-9
  • 19 Foo JY, Lim CS, Wang P. Evaluation of blood pressure changes using vascular transit time. Physiol Meas 2006; 27: 685-694
  • 20 Ma T, Zhang YT. A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. Conf Proc IEEE Eng Med Biol Soc 2005; 1: 996-999
  • 21 Teng XF, Zhang YT. An evaluation of a PTT-based method for noninvasive and cuffless estimation of arterial blood pressure. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 6049-6052
  • 22 Wong MY, Poon CC, Zhang YT. An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc Eng 2009; 9: 32-38
  • 23 Hennig A, Gesche H, Fietze I, Penzel T, Glos M, Patzak A. Messung von apnoebezogenen Blutdruckänderungen mittels Pulstransitzeit und Penaz-Prinzip. Atemwegs- und Lungenkrankheiten 2012; 38: 1-8
  • 24 Schmalgemeier H, Bitter T, Bartsch S et al. Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation. Sleep Breath 2012; 16: 1105-1112
  • 25 Spießhöfer J, Heinrich J, Bitter T et al. Validation of blood pressure monitoring using pulse transit time in heart failure patients with Cheyne-Stokes respiration undergoing adaptive servoventilation therapy. Sleep Breath 2014; 18: 411-421
  • 26 Muehlsteff J, Aubert XL, Schuett M. Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 5088-5092
  • 27 Nisbet LC, Yiallourou SR, Nixon GM et al. Characterization of the acute pulse transit time response to obstructive apneas and hypopneas in preschool children with sleep-disordered breathing. Sleep Med 2013; 14: 1123-1131
  • 28 Vlahandonis A, Biggs SN, Nixon GM et al. Pulse transit time as a surrogate measure of changes in systolic arterial pressure in children during sleep. J Sleep Res 2014; 23: 406-413