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Introduction

Reactive Oxygen Species and Free Radicals
Free radicals can be defined as amolecule that includes one or
more unpaired electron. Reactive oxygen species (ROS) are a
kind of free radical associated with a single oxygen atom
having a higher reactivity than O2.1,2 They are natural by-
products of cellular function and ionizing radiation. ROS
can be categorized into four groups: hydroxyl radical (OH),
superoxide anion (O2

�), hydrogen peroxide (H2O2), and
singlet oxygen (1O2). The reactivity of these molecules is
relatively low, yet they can produce hydroxyl radicals in the
presence of transition metal by Fenton or Haber-Weiss reac-
tion. Some other free radicals have biological importance as
well. Lipid peroxide (ROOH), lipid peroxyl radical (ROO), and
lipid alkoxyl radical are associated with lipid molecules in
the cell membrane. Some species are considered as reactive
nitrogen species (RNS) such as nitric oxide (NO), nitrogen
dioxide (NO2), and peroxynitrite (ONOO�) whereas thiyl
radical (RS) have unpaired electron.2–4

Oxidative Stress and Nitric Oxide System
Nitric oxide (NO) formation and oxidative stress can be
classified together. NO is an uncharged, diatomic, free radical
that has the ability to diffuse and affect biological molecules.1

This molecule is produced by nitric oxide syntheses (NOSs)

from L-arginine and nicotinamide adenine dinucleotide
phosphate hydrogen (NADPH) using heme, flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), and
tetrahydrobiopterin.5

NO synthases is found in the three metabolically active
isoforms in mammals: Neuronal (NOS1), inducible (NOS2),
and endothelial (NOS3). NOS1 and NOS2 are soluble and NOS3
is membrane bound. Neuronal and endothelial NO is
present in various types of cells and is activated in the cell
temporarilywhen calcium influx increases. NObinds to heme
iron of soluble guanylate cyclase to produce cyclic guanosine
monophosphate (cGMP) that modulates mediators such
as ion channels, phosphodiesterase, and protein kinases.6

Inducible NO, NOS2, is activated against inflammatory and
immunologic response. This isoform produces NO in the
intracellular calcium state. This massive production of NO
is about a 1,000 times more when compared other NO
isoforms.7

NO can be produced by nonenzymatically and can be
synthesized from nitrite at acidic pH levels under reducing
conditions. Nonenzymatic NO generation may result in simi-
lar biological and enzymatically produced NO. In addition,
nitrite acts as hypoxic buffer and may contribute to hypoxic
vasodilation and modulation in infarction and ischemia-
reperfusion tissue injury.8

Keywords

► oxidative stress
► biomarker
► proteomics
► pediatric diseases

Abstract Free radicals are small molecules enabled to react with other biological molecules. The
antioxidant system in metabolism is responsible for balancing antioxidant levels and the
amount of free radicals. Excessive free radicals production will result in oxidative stress.
A certain amount of reactive oxygen species are required to maintain normal physio-
logical activity. However, elevated oxidative stress levels will damage molecules and
produce enzymatic malfunction. Several pediatric diseases are associated with in-
creased oxidative stress. A biomarker is a specific molecule that acts as an indicator
for a specific condition. There are some oxidative stress biomarkers currently in uses and
further analysis of their application is required. Protein molecules may serve as potential
biomarker according to proteomics analysis.
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Proxynitrite Formation
NO can react with O2

� and produce ONOO�. Similarly, super-
oxide dismutase (SOD) can react with O2

� as an antioxidant.
NO reacts with O2

� at a three times higher rate than SOD
activity. The calculated diffusion rate is 6.7 � 109 M�1s�1for
the NO reaction whereas SOD activity is 2 � 109 M�1s�1. A
competition exists between NO and SOD in capturing O2

�.
Under the normal physiologic conditions, the amounts of NO
and O2

� are in much more lower concentrations when
compared with SOD amount. Therefore, a limited amount
of ONOO� is generated in normal conditions. In pathologic
states NO and O2

� increase in the setting of low SOD activity,
resulting in toxic levels ONOO�.9

Antioxidants
ROS has an important function in cell signaling mechanisms,
especially in autocrine and paracrine systems as a defense
against microbial and tumor cells.1,2 Excess amounts of
ROS may contribute to disease states or inflammation. The
amount of ROS is restricted by several systems such as
electron transfer, enzymatic removal, and ROS scavenging.
Under normal physiologic states, the balance between ROS
generation and ROS elimination is maintained by antioxidant
enzymes and nonenzymatic antioxidants.10

Antioxidants in biological systems can be classified into
three groups: enzymes, proteins, and low-molecular-weight
proteins. Antioxidant enzymes are SOD, catalase, glutathione
peroxidase, glutathione reductase, glutathione-S-transferase
(GST), thioredoxin reductase, and hemeoxygenase. Proteins
involved in antioxidant mechanisms include albumin, ferri-
tin, transferrin, lactoferrin, ceruloplasmin, and thioredoxin
(TRX). Other low-molecular-weight antioxidant molecules
include bilirubin, tocopherols, carotenoids, ubiquinol/ubiqui-
none, ascorbate, glutathione, cysteine, and urate. An imbal-
ance between antioxidant system and free radicals
metabolism results in disequilibrium and causes oxidative
stress.1,2,11,12

It is well known that high ROS and oxidative stress are
correlated with some pathological conditions such as male
infertility, atherosclerosis, hypertension, renal failure, neuro-
degeneration, carcinogenesis, and other inflammatory and
degenerative conditions.13

Oxidative Stress Biomarkers
Biological molecules are prone to damage by reactive oxygen
species. Oxidative stress may damage carbohydrates, lipids,
proteins, and nucleic acids.14 ROS are small molecules with a
short half-live that requires special techniques for in vivo
detection biomarkers because oxidative would not only be
useful to detect oxidative damage but would also help deter-
mine the source of oxidative stress.3,15,16A specific biomarker
would be important to determine byproduct of oxidation and
to prevent further destructive effect of oxidative stress.

Oxidative stress biomarkers can be generally classified into
two groups:

1. Formation of modified molecules by the effect of ROS
2. Measurement of enzymes or antioxidants

Biomarkers from body fluids such as blood, urine, semen,
or cerebrospinal fluid17 would allow the monitoring of oxi-
dative stress in vivo that cannot be done with other invasive
tests. A test that could visualize biomarkers by using a
fluorescent probe would be useful, but it is not practical as
a routine laboratory test.2,8

The first group of biomarkers includes ROS-generated
byproducts that affect other biologically important mole-
cules. This interaction can be mediated by scission, cross-
linking, or covalent binding between free radicals and biolog-
ical molecules. Some byproducts can be repaired or removed,
but the others can stay longer if the molecule is the part of an
intra- or extracellular compartment. ROS mainly attacks
carbohydrates, lipids, proteins, and nucleic acids.18 The effect
of ROS on these molecules can be measured by analyzing
stable byproducts produced by them. Malondialdehyde-
lysine, 4-hydroxy-2-nonenal-lysine, acrolein-lysine, 8-hydroxy-
2-deoxyguanosine (8-OHdG), carboxymethyl-lysine, pentosi-
dine, andnitrite/nitrate are some clinically applicablebiomarker
for diagnosis of oxidative stress.19

Better biomarkers are necessary to improve diagnosis,
targeted therapy, and therapeutic response to overcome the
effect of oxidative stress. A proteomics approach based on
mass spectrometry may serve as a potential protein biomark-
er for a clinical sample. New discoveries in proteomics
methodology may allow for predicting clinically useful bio-
markers with further advances in qualification, verification,
assay optimization, validation, and commercialism.20 Discov-
ery of protein biomarker for oxidative stress may serve as a
potential biomarker for clinical tests.

Studies including children are needed to investigate role of
oxidative stress in pediatric disease. It could provide a better
approach to understanding the effect of oxidative stress
in pediatric diseases when compared with adolescents.
However, a limited number of studies have reported on
oxidative stress in similar children.21,22 In most studies,
oxidative stress parameters were identified in blood samples
that allow glutathione peroxidase and glutathione reductase
activity,23 antioxidant vitamins,24 uniquinol/ubiquinone,25

and SOD and catalase activities.26 Schock and colleagues
reported oxidative stress biomarkers including antioxidant
vitamins in 83 healthy children.21 Kaufmann and colleagues
identified urinary levels of F2-isoprostane in 342 children
with less than 7 years population.24 In conclusion, further
studies are needed to determine reference values of oxidative
stress in pediatric urine samples.

Oxidative Stress in Pediatric Diseases
Oxidative stress is associated with the progression and path-
ogenesis of many diseases.6,27–30 Certain drugs such as
analgesic, anticancer drugs may also contribute tissue dam-
age by increasing oxidative stress.31–33 Oxidative stress bio-
markers have been measured in cerebrospinal fluid, joint
fluid,34 nasal lavage fluid,35 several types of tissues,11,12,36–38

or combination with blood or urine samples.39–41

Oxidative stress levels were conventionally measured by
some analytical techniques including high-performance
liquid chromatography (HPLC) and gas chromatography–mass
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spectrometry (GC-MS).42–44 Recent developments in monoclo-
nal antibody technology allows for specific biomarkers via
enzyme-linked immuno assay (ELISA) or Western blot analy-
sis.3,42 ELISA and Western blot provides a strong biomarker
candidate as other analytical tests labor intensive and
costly.28,45,46 Recently, proteins were studied as potential
biomarker to detect effect of oxidative stress on metabo-
lism.47–49 This technique needs to be improved to be useful in
clinical medicine to provide rapid results. The majority of
oxidative stress parameters in different pathologic states are
performed by high-throughput ELISA techniques.45,46,50

A respiratory burst is an oxidative burst that results in the
rapid production of reactive oxygen species, including super-
oxide and hydrogen peroxide. NADPH oxidase is an enzyme
that has an ability to produce highly reactive free radicals. It is
particularly involved in vascular disease and spontaneous
recombination with other molecules leading to free radical
production. A systematic cascade initiates the reaction of
superoxide molecules with NO. This reaction results in the
formation of peroxynitrite and reduces necessary bioactive
NO. In addition, the superoxide anion peroxynitrite and other
reactive oxygen species cause some pathology as a result of
oxidation of protein and lipids. Free radicals affect redox
signaling pathways and posttranslational modifications.51

Many studies have reported a correlation between infection
and the respiratory burst effect on biologically important
molecules. Cemek and colleagues identified an oxidative
burst in children with hepatitis A.52 Caksen and colleagues
identified lipid peroxidation and antioxidant status in chil-
dren with tonsillitis.53 Bayiroğlu monitored increased lipid
peroxidation and antioxidant status in pediatric gastroenter-
itis patients.54

Proteins may serve as better potential biomarkers when
compared with genome.55 Proteomics is an evolving field in
the evaluation of diseases. In addition to protein identifica-
tion, quantitative proteomics provides information about the
physiologic and pathologic function of identified proteins as
well as their cellular localization and biological processes.56

Differential expression of selected proteins may be used as a
biomarker as a noninvasive diagnostic tool.47,57,58 Under-
standing the protein expression level may be the key to
understanding the cellular processes and/or pathways of a
disease.59

Oxidative stress has destructive effect on several diseases
by decomposing of biologically important molecules. Carbo-
hydrates, lipids, nucleic acids, and proteins are prone to be
denatured by the effect of free radicals and cause a loss of
function. Specific biomarkers are needed to improve nonin-
vasive diagnostic tools and develop better treatments. Recent
developments have shown that proteins are potential mole-
cules with the specificity detect qualitatively and quantita-
tively oxidation. Differential expression of candidate proteins
can be determined by proteomic tools and quantitative
proteomics may help find that target protein.

Conclusion
The challenge for further analysis in pediatric disease is
elucidating molecular mechanism behind disorders and

engenders the oxidative stress in mechanisms. Before accept-
ing antioxidant therapy in clinical practice, comprehensive
studies must be conducted to evaluate oxidative stress
biomarkers with together clinical endpoints of patients.

This review provided updated information about nonin-
vasive value of evaluating oxidative stress in pediatric medi-
cine. Many of the mentioned biomarkers can be measured in
urine samples where protein extraction will be needed for
proteomics analysis. Measurement of these parameters has
great potential for managing and treating oxidative stress-
related pediatric diseases.
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