Updated Requirements for Measurement Quality and Quality Assurance of Point-Of-Care Testing (POCT) – Blood Glucose Measurement Systems with Unit-Use Reagents Suitable for the Initial Diagnosis of Diabetes Manifested in Pregnancy or Gestational Diabetes Mellitus (GDM) According to the GDM Guideline of the German Diabetes Association (DDG)

Consensus Recommendation by the German United Society for Clinical Chemistry and Laboratory Medicine (DGKL) and the German Diabetes Association 2015

Basics and Requirements

In 2011, the German Diabetes Association (DDG) and the German Society of Obstetrics and Gynecology (DGGG) published a new, inter-disciplinary, evidence-based S3-guideline (AWMF guideline 057/008) for gestational diabetes mellitus (GDM; ICD-10: 024.4G) [1]. It contains recommendations on the diagnostic procedure, treatment and follow-up care of GDM. This guideline also makes it possible for the first time for the attending physician to use POCT glucose measurement systems with unit-use reagents in the initial diagnostic procedure of GDM. At the same time, a corresponding manufacturer’s recommendation is a requirement for this use [1, 2]: “For the initial diagnostic procedure of diabetes manifested in pregnancy or gestational diabetes when using unit-use reagents and related measurement systems, these systems are explicitly intended for physician use in the diagnostic procedure according to the manufacturer’s recommendations.”

A common premise of this guideline and other relevant DDG guidelines [1 – 3] is that handheld instruments for blood glucose (BG) self-measurement (homecare sector) are not suitable for initial diagnostic procedure of GDM or any other form of diabetes. All relevant guidelines reject the use of “patient measurement systems” since these systems have to comply only with the minimum requirements according to the corresponding ISO standard 15 197 in the case of their European approval with a CE mark. For these systems, the quality of the glucose measurements within the clinically relevant measurement range may deviate from the reference value by up to ± 20% for 95% of all values until May 2016, the revised standard, starting from June 2016, restricts the deviation to ± 15%. This is unacceptable as the maximum permissible measurement error for the diagnostic procedure of GDM.

The topicality and practical relevance of the new GDM Guideline are reflected by the fact that its essential content has also been adopted in the decision by the Federal Joint Committee in its session on 15 December 2011, to supplement the guidelines concerning medical care during pregnancy and after childbirth (motherhood guidelines) accordingly [4]. Since the above-mentioned DDG guidelines [1 – 3] contained no detailed specifications for the required manufacturer’s recommendations, the requirements for the measurement quality and the quality assurance of POCT glucose measurement systems for the initial diagnostic procedure of GDM were fully detailed in 2012 in a joint statement by the German United Society for Clinical Chemistry and Laboratory Medicine (DGKL) and the DDG, taking into consideration the technical possibilities available at that time [5]. Because the measurement quality of the best available POCT glucose measurement systems with unit-use reagents [6 – 11] has since been further substantially improved, it is possible (and we see the need for it) for DGKL and DDG to jointly update the existing requirement especially in terms of the measuring quality in the diagnostic procedure of overt diabetes in pregnancy or GDM (Table 1).

That should serve as an evidence-based guideline for the manufacturers, the approval and regulatory authorities, the users in clinical trials and in routine practice, as well as the third-party payers.
Updating the requirements for the measuring quality and the quality assurance of the POCT glucose measurement systems with unit-use reagents for the diagnostic procedure of overt diabetes in pregnancy or GDM (2015)

1. Eligibility criteria for the CE mark: As in the past, with a focus on the diagnostic procedure of overt diabetes in pregnancy or GDM.
2. Test sample: only venous whole blood, no capillary blood!
3. Proof of accuracy across the clinically-relevant measurement range:
 1. In the case of approval of the meter and test strip sensor in Germany/EU in accordance with DIN EN ISO 15 197:2013 with the following modification: At least 95 % of individual blood glucose (BG) readings should be within ±10 mg/dL compared to the measured values with the manufacturer’s reference system (hexokinase method or GOD method with the YSI system) at BG concentrations of <100 mg/dL, and within ±10 % compared to the above-mentioned reference system at BG concentrations ≥100 mg/dL.
 2. In the case of production of new lots of test strips/sensors post-approval: The manufacturer should ensure that each new batch that is placed on the market complies with the requirements according to 3.1. The suitable test method can be determined by the manufacturer in a product-specific manner. If the in-use measurement quality of new batches cannot be secured in accordance with 4, the manufacturer is obliged to provide evidence of the outcome of his relevant procedure according to 3 upon request of the regulatory authority.
4. Ensuring the in-use measurement quality:
 4.1 Provisions of RiliBAEK (Revised Guideline of the German Medical Association on Quality Assurance in Medical Laboratory Examinations)[12, 13]: All applicable requirements of RiliBAEK for the POCT systems with unit-use reagents should be observed, including the rules for the internal and external quality assurance (QA).

The corresponding author and the co-authors declare no business or personal affiliations with respect to this manuscript in the past 3 years.

Conflict of Interest: The corresponding author and the co-authors declare no business or personal affiliations with respect to this manuscript in the past 3 years.

References
M. Siegel E (Hrsg.) sowie im Internet: „Aktuelle Fassung der evidenzbasierten Leitlinien“ www.deutsche-diabetes-gesellschaft.de

7. Klaff LJ, Brazg R, Hughes K et al. Accuracy evaluation of Contour Next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting. Diabetes Technol Ther 2014; 17: 8 – 15

